
 1

.15926 Editor

Version 1.5beta

Sample Mapping and Adapter Prototyping

Walk-through Guide

13 July 2014

1. Source data ... 2

2. Modelling conventions and project setup ... 2

3. Preparing RDL from Equipment list ... 3

4. Defining pattern for project RDL... 4

5. Importing RDL .. 5

6. Preparing Equipment list .. 5

7. Defining pattern for Equipment... 6

8. Importing Equipment ... 7

9. Preparing Connectivity data .. 8

10. Defining pattern for Connectivity.. 9

11. Importing Connectivity .. 10

12. Removing duplicates and typing missing objects .. 10

13. Exporting and comparing diagram .. 11

14. Viewing Linked Data pages for the project .. 12

This document will guide you through the process of data mapping and adapter prototyping
for the sample plant process data using .15926 Editor. To follow it step-by-step you have to

download the Editor from http://techinvestlab.ru/dot15926Editor (this guide is valid for
versions starting from 1.5beta).

Initial data set and all information required to reproduce described transformations are

included in the folder dot15926Editor15beta\samples\ProcessDiagram and its subfolders.
All folder references below are given related to it.

Prototyping process described here depends on the MS Excel data transformation

capabilities. Data are preprocessed in spreadsheets and imported into the ISO 15926 RDF
format using the Editor's built-in spreadsheet import. Fully functional adapter independent of
the inherent restrictions of this approach can be implemented at a later stage when mapping
and data transformation are prototyped and debugged.

http://techinvestlab.ru/dot15926Editor

 2

1. Source data

We will be working with a single high-level process diagram. It is prepared with the software
from one of the major engineering software vendors. The data is exported using the
standard export functionality of the tool. Look in \Source folder to see the diagram in PF-

PFB-Plant.pdf file and two spreadsheets with exported data
EquipmentWithBaseObjectAndAttributeHeight.xls and ProcessUnits-Connectors.xls.

2. Modelling conventions and project setup

To make this example short and easily understandable even for novice data modellers we

will keep some major modelling choices very simple or probable oversimplified.

All objects on the diagram will be modeled as individual physical objects. The most rigorous
modeling at the initial stages of the plant lifecycle can require seeing them as classes of

activities.

The model will not include temporal parts of modeled individuals, temporal nature and
temporal boundaries of objects will not be modeled.

The data prepared with such modeling conventions can be used for one-time data exchange

between engineering tools, but can not be used for lifecycle data storage.

According to the choices made above we will use templates for individuals from the IIP
template set (local copy of templates available from http://posccaesar.org/sandbox/p8iwg/)

and IIP project Template Information Patterns (project page
http://iringug.org/wiki/index.php?title=ISO_15926_Information_Patterns_%28IIP%29, TIP
Manager http://iringsandbox.org:8080/tip/tipmanager, patterns imported into the Editor from

database backup http://www.iringsandbox.org/bak/tips.mdb).

Of course we will use PCA Reference Data Library (file for local use available from
http://rds.posccaesar.org/downloads/PCA-RDL.owl.zip). Please download the file, unzip it

and register its location in the Editor settings.

Go to the folder \ProjectData and open project file
DiagramExample.15926 in the Editor. You will see the project
composed from the following data sources:

PCA RDL – POSCCaesar RDL (opened as read-only
from the Editor settings);

iip_fullset_20140131_PCA_dm.owl – IIP template set (initial set and specialized
templates);

tips25062014.patt – IIP TIPs file;

diag_example_patterns.patt – project-specific patterns;

ExampleRDL.rdf – project-specific reference data library (now empty);

ExampleData.rdf – project data file (now empty).

We will use the following two namespaces: http://data.example.org/rdl/ for project-specific
reference data and http://data.example.org/project/ for project data. You can find them
registered in the Properties of respective data sources.

http://posccaesar.org/sandbox/p8iwg/
http://iringug.org/wiki/index.php?title=ISO_15926_Information_Patterns_%28IIP%29
http://iringsandbox.org:8080/tip/tipmanager
http://www.iringsandbox.org/bak/tips.mdb
http://rds.posccaesar.org/downloads/PCA-RDL.owl.zip
http://data.example.org/rdl/
http://data.example.org/project/

 3

One project specific annotation
hasLocalId is registered in the Properties

of the project to record IDs of reference
data entities and project objects used in

the native application. Other annotation
properties in the project are standard RDF/RDFS properties and properties used in PCA
RDL.

3. Preparing RDL from Equipment list

Looking at exported project data file EquipmentWithBaseObjectAndAttributeHeight.xls
we can see that equipment item types can be derived from Base object column (F) where

some type of internal ID of authoring system is located. Column Decscription (E) allows us to

deduce the names of base objects from the descriptions of project objects.

Only 8 base objects with different IDs are used in this file:

Description Local ID

Filter @1PE|PO|EQ|01|FIL

Mixer @1PE|PO|EQ|01|MIX

Vessel, vertical @1PE|PO|EQ|03|VES|VES01

Vessel, horizontal @1PE|PO|EQ|03|VES|VES02

Tank, vertical @1PE|PO|EQ|03|VES|VES03

Tank @1PE|PO|EQ|03|VES|VES04

Pump @1PE|PO|EQ|05|PUM

Armature @1PE|PO|EQ|06|VAL

We’ll record them to the project-specific reference data library and link them to appropriate
PCA RDL reference data classes. To do this we prepare a spreadsheet and import it using
the Editor spreadsheet adapter. Go to the folder \ForImport and open ProjectRD.xls file.

Column A contains project RDL namespace we will use to form URIs for new entities.

We will use unique IDs (fragment IDs) for reference data entities built from their internal IDs
– this will allow us to use Base object field in the exported spreadsheet to determine the type

of the object using only Excel data processing. Obviously it will be better to use UUID

 4

generator to guarantee global uniqueness of fragment IDs. When spreadsheet adapter is

prototyped and debugged, UUID generation can be implemented in a dedicated adapter
code free from restrictions of the Editor's built-in spreadsheet import.

Column B contains Excel formula designed to remove all symbols not allowed in URI from

Local ID and concatenate resulting fragment ID with the namespace:

=SUBSTITUTE(SUBSTITUTE(CONCATENATE(A$2;D2);"|";"");"@";"")

We preserve Description and Local ID in columns C and D to import them as annotation
properties.

Column E contains Part 2 type of the RD entity.

Column F contains URI of PCA RDL superclass and column G contains its name for easy
reference.

Columns H and I contain metadata we'll use in our project RDL – for the demonstration

purposes we'll import only the date of entity creation and ID of the creator.

4. Defining pattern for project RDL

To import RDL spreadsheet content into the project reference data library we need a pattern

which will describe the structure of the spreadsheet. Open diag_example_patterns.patt
(project-specific pattern data source) in the Editor, find RD_Registration pattern and fully

unfold all its nodes.

The pattern has a signature that corresponds to the columns of

the imported spreadsheet. A single mapping to templates and
properties (named simple) is defined for this pattern.

It maps local_id, P2Type and name to the appropriate

annotation and object properties of an object (double click each

mapping node to see property used).

The pattern also describes one additional Specialization entity
entity1 (an instance of Part 2 Specialization type) which

describes relation between new entity and its PCA RDL
superclass. We will create project RDL using Part 2 type instances, according to the current

PCA RDL modelling rules.

The pattern contains two more parts, assigning our metadata properties to the same entities
object and entity1. Separate parts are required to allow repeated imports of the same

spreadsheet, please refer to the documentation for more detail on the work of the Editor's
built-in spreadsheet import.

 5

5. Importing RDL

Check that ProjectRD.xls file is open
in Excel on your computer and
ExampleRDL panel is an active panel

in the Editor. Call pattern import
extension (Build patterns from MS
Excel in Extensions menu).

Select sheet RDL Data and load

mapping rd_mapping.json from
\Scripts folder. Correspondence

between pattern roles described
above and spreadsheet columns is
established. The check mark at the object role indicates that entity in this role should be

created with URI recorded in the corresponding column (all other URIs for new entities will
be generated by the Editor).

Import data. Sometimes the adapter will return an
error code in the console indicating problems with

Excel ODBC connection. Please make sure that
the cell selected in the spreadsheet is an empty
cell out of the range of data prepared for import.

Check the content of the ExampleRDL. Look also
at the spreadsheet. It now contains URIs of all
entities created during the import (to the right of

the main data block), which allows incremental
import – you can add more entities to it and
repeat the process.

6. Preparing Equipment list

Now we will prepare for import an exported project data file
EquipmentWithBaseObjectAndAttributeHeight.xls. We have to record URIs for entities
and preprocess information about the one property we have.

Go to the folder \ForImport and open Equipment_for_Import.xls file.

We will again use internal IDs as unique IDs (fragment IDs) in project data item URIs – this
will allow us to connect to the second project export file at the next stage. Again it will be
better to use UUID generator to guarantee global uniqueness of fragment IDs, and UUID

generation can be implemented at a later stage in an adapter which is not dependant on
standard Excel capabilities or on the built-in spreadsheet adapter

.

 6

Column A contains project RDL and project data namespaces to form URIs for entities.

We will construct Equipment IDs in column C using Unit ID (column B) and equipment label
(column H) using Excel formula:

=CONCATENATE(LEFT(B2;12);"-";H2)

The same schema is used for equipment IDs in the second project export file.

Equipment IDs we will use to form equipment URIs in column D by concatenating them with
project namespace and prefix "id" using formula:

=CONCATENATE(A5; "id"; C2)

To classify project data items we'll reconstruct project RDL URIs in column K from parent

object IDs in column J. The schema used to build these URIs is the one used in project RDL
import:

=SUBSTITUTE(SUBSTITUTE(CONCATENATE(A$2;J2);"|";"");"@";"")

To import the Height attribute we have to separate value from the UOM. It is done by the
Excel formula:

=IF(ISBLANK(F2); ""; (LEFT(F2;FIND("mm";F2)-4)))

This formula accounts for the fact that not all items have an attribute recorded, and we have

lo leave blank cells blank.

As all UOMs are the same (millimetres) we will not put them in a separate column, just
record them in the mapping.

Columns L and M contain the same metadata we've used in the project RDL.

7. Defining pattern for Equipment.

To import equipment spreadsheet content into the project data source we need a pattern
which will describe the structure of the spreadsheet. Open the panel with the

diag_example_patterns.patt again (project-specific pattern data source), find
Equipment_with_Height pattern and fully unfold all its nodes.

The pattern has a signature that corresponds to the columns of the imported spreadsheet.
One single mapping to templates and properties is defined for this pattern. It is named
prop_and_iiptpl to reflect the fact that it contains mapping to properties and to the templates

from IIP template set.

 7

It maps three roles local_id, comment and name to the
appropriate annotation properties of an object and also maps
a parent_type role to the rdf:type property (this role of the

pattern should be occupied by an URI of parent object).

We’ll not assign Part 2 types to the entities in the project data, using their classifiers from
project RDL instead. It is difficult to add Part 2 types to the big project data spreadsheet

manually, but very easy to do it after the import by inferring appropriate types from RDL
classifiers, if required.

To map the Height property we'll use EstimatedHeight TIP from imported database of the

TIP Manager. To do it we create a part MM which contains millimetre UOM (all RD entities to

be referred in patterns require separate parts in the pattern description).

The next part corresponds to the EstimatedHeight TIP with MM part occupying the
EstimatedHeightUoM role, oblect mapped to the Possessor role and height value mapped to

the EstimatedHeightValue role.

The pattern also contains the separate part assigning to the same object our metadata

properties.

8. Importing Equipment

Check that
Equipment_for_Import.xls file is
open on your computer and

ExampleData panel is an active panel
in the Editor. Call pattern import
extension (Build patterns from MS

Excel in Extensions menu).

 8

Select sheet Data and load mapping

equipment_height.json from \Scripts folder.
Correspondence between pattern roles described
above and spreadsheet columns is established. The
check mark at the object role indicates that entity in

this role should be created with URI recorded in the
corresponding column (all other URIs for new entities

will be generated by the Editor).

Import data and check the content of the
ExampleData.

9. Preparing Connectivity data

Now we will prepare for import a second exported project data file ProcessUnits-
Connectors.xls.

Looking at the file we can notice several important

points:

1. Equipment items are identified by internal IDs
we've already learned to reconstruct during
equipment import.

2. There are more objects, identified as PS and
PFB, representing process streams
connecting equipment items on the diagram

or leading to other equipment beyond this
diagram. Two more entities should be added
to the project RDL to classify such objects in

the project data (they were already added in
our file).

3. Connection of objects is recorded via ports. Some ports have identifiers with letters O

or I, signifying that they are either output or input ports. We should create such ports

in the project data as separate entities then.
4. Each connection is recorded twice – from A to B and from B to A. It is very difficult to

clean this out is Excel, so we'll deal with it later.

Let's prepare these data for import. Go to the folder \ForImport and open
Connections_for_Import.xls file.

 9

Column A contains project data namespace to form URIs for entities

We''ll use IDs for the connected objects (columns B and K) to form object URIs in columns C
and J, using the same concatenation Excel formula we've used before.

We also need some schema to construct URIs for new port objects. To do it we'll

concatenate object (port owner) URIs with "~" symbol and with port Label from column E or I
and write port URIs to columns F and G:

=CONCATENATE(C2;"~";E2)

=CONCATENATE(J2;"~";I2)

UUID generation can be used at a later stage when the adapter is tested and implemented
as a separate code.

Columns L and M contain the same metadata as before.

10. Defining pattern for Connectivity

To import connectivity spreadsheet content into the
project data source we need a pattern which will describe
the structure of the spreadsheet. Open the panel with the

diag_example_patterns.patt again (project-specific
pattern data source), find Connection_via_Ports pattern

and fully unfold all its nodes.

Click on pattern nodes to see the way template parts are
connected together.

The pattern has a signature that corresponds to the
columns of the imported spreadsheet. One single

mapping to templates and properties is defined for this
pattern. It is named iiptpl to reflect the fact that it contains

mapping to the templates from IIP template set.

Two objects of the PORT type are described in the
pattern; they'll be created in the data source for each
recorded connection. PCA ClassOfFunctionalObjectis PORT is used as type of port objects.

 10

Three templates are included in the pattern, two are describing ports as features of the

corresponding project objects, and one is describing connection between ports.

The pattern again contains the separate part for each previously described element with
metadata properties assigned to facilitate a repeated import.

11. Importing Connectivity

Check that
Connections_for_Import.xls file is
open on your computer and

ExampleData panel is an active
panel in the Editor. Call pattern
import extension (Build patterns from

MS Excel in Extensions menu).

Select sheet Query and load

mapping connections.json from

\Scripts folder. Correspondence
between pattern roles described
above and spreadsheet columns is established. Two check marks at the port roles indicate

that entities in these role should be created with URIs recorded in the corresponding
columns (all other URIs for new entities will be generated by the Editor).

12. Removing duplicates and typing missing objects

Now we will solve in the Editor some problems too difficult to solve during data

preprocessing in Excel.

a. Port type assignment

Objects with the type PORT should receive classifications with PCA RDL classes INPUT

and OUTPUT dependant on the letter used in their names.

b. Stream import completion

Stream and connector objects (which are now occupying roles in the connectivity templates)
should be properly declared with label and local ID properties, and classified with project

RDL entities based on their IDs (Process Stream or PFB connectors).

c. Duplication removal

We have to remove duplicate instances of the ConnectionOfIndividualTemplate, where ports
A and B occupy hasSide1 and hasSide2 roles once in the direct order and once in the

opposite order. Notice that no duplicates were created for ports themselves or for
FeatureWholePartTemplate, although each was also processed twice during the import –
adapter will never duplicate fully identical objects.

To solve these problems find project_scripts.py file in the \Scripts folder and run its
content in the Editor's console. The execution of the script can take some time, the message
Done will be printed in the console window upon completion.

An import is finished. Now we have representation of the exported diagram data in the ISO

15926 RDF file.

 11

13. Exporting and comparing diagram

It is not an easy task to check import correctness by
navigation through an RDF file, although pattern view
(simplified entity view) in the Editor to some degree

allows verification of data.

We have implemented a basic graphical viewer for ISO
15926 data and will use it to compare our results with the

source diagram.

The viewer is just a Python script which generates
an .xgml graph file. This file can be opened,
automatically arranged and explored in the free yEd

graph editor (downloadable from
http://www.yworks.com/en/products_yed_about.html).

Install yEd on your computer, then find viewer.py file in the \Scripts folder and run its
content in the Editor's console. The execution will take some time, the message Done will be

printed in the console window upon completion.

Locate pid_view.xgml file in the folder with Editor executable and open it in yEd. Use
automatic layout via Layout menu (good results are obtained with Tree layout, just check the
box Allow General Graphs in layout options). You can also find arranged pid_view.xgml

and exported pid_view.png files in the \Imported folder.

The viewer uses shapes predefined in the standard yEd libraries to render equipment of

different types, and resulting picture is not very similar to the standard PFD or P&ID.

Nevertheless visual comparison is possible and its results are quite satisfactory.

It appears that the diagram falls into several disconnected components because exported

connectivity data aren’t complete and doesn’t contain connections for some items around
the Cartridge Filter module.

http://www.yworks.com/en/products_yed_about.html

 12

14. Viewing Linked Data pages for the project

Let’s explore another way to look at ISO 15926 RDF data sets. There is a growing interest in
the engineering community in the Semantic Web approaches to data representation,
publishing and management. Linked Data is one such approach.

Open-source Linked Data extension is developed for the .15926 Editor using open source
Python web toollkits - Flask (http://flask.pocoo.org/) and Tornado
(http://www.tornadoweb.org/).

Linked Data extension turns your Editor into a web server capable to deliver HTML pages

based on the RDF data sets. In the basic configuration the server works locally on your
computer. It can service interconnected human-readable pages for represented concepts
processing diverse URIs and turning them into local page URLs. Advanced configuration

possibilities allow use of the extension on the Internet with differentiated processing for
server owner’s own URIs and URIs of external data.

Unlike the most other Linked Data server applications, in our Linked Data extension content

of the pages is defined by patterns and is open for customisation. It is possible to model
some relationship or concept as a complex RDF graph (pattern), and describe its preferred
human-readable appearance on a web page by HTML template. The Editor will search for

the pattern in RDF data and put its information on the page in a comprehensible form.

The search in the extension is also pattern-oriented and has semantic capabilities.

Searching for the string it locates this string in all identifiers and in all classifiers of data
entities. For example, searching for “pump” will return all entities with “pump” in identifier and

all entities classified with entities with “pump” in identifier.

Identifiers and classifiers are in turn defined by corresponding patterns. For example, objects
of both rdfs:label and http://data.example.org/properties/hasLocalId can be defined as

identifiers.

Classifiers are searched recursively across the data sources. An entity with rdf:type X will

get X as direct classifier and all superclasses of X as inferred classifiers.

To see Linked Data extension working you can open the project ProcessLinkedData.15926

from /Imported folder. This project contains the same data we’ve just imported from
spreadsheets. Go to Extensions menu and select Start/stop linked data demo command.

Point your browser to http://localhost:5000/

Three search fields on the screen allow you to search in the project data, in the local

reference data or in all reference data (local and PCA RDL).

http://flask.pocoo.org/
http://www.tornadoweb.org/
http://localhost:5000/

 13

Search for “valve” in Project Data field. Although there are no entities with “valve” substring

in the label, there are many entities classified with Armature class, which is in turn subclass
of the VALVE class in PCA RDL. Semantic search of the extension will return all project
entities for which VALVE is a direct or inferred classifier.

If you search for “artefact” in Project Data field – you will get all equipment items (valves,
pumps, vessels, etc.). PCA ARTEFACT is an inferred superclass for all equipment types.

And if you search for “thing” in Project Data – all entities in the project will be returned, as

PCA ISO 15926-4 THING is inferred classifier for all project entities.

Navigate to a particular equipment item page, for example to
http://localhost:5000/entity?uri=http://data.example.org/project/id=PR001-PU023-VAL071.
You can see information on entity Identifiers, Definitions and Descriptions, Direct classifiers,

Inferred classifiers. IIP template pattern allows identifying parts of an entity (ports of a valve
in this case). And connection via ports described in the patterns allows us to see connected
process streams.

From this page you can navigate the project by links to connected entities, or look at various
classifiers to get more understanding of their nature.

Using Search All Reference Data field you can search both local reference data library and

all PCA RDL. Or you can go directly to the
http://localhost:5000/entity?uri=http://posccaesar.org/rdl/RDS327239 and compare its rich
information content with the PCA LD page for the PUMP -

http://posccaesar.org/rdl/RDS327239 .

Linked Data extension allows you to explore any project in which there are data sources with
module names pca, projrdl and projdata. You can have only one or two of these data
sources in your project. For example, open PCA RDL in a new project, assign it pca module

name in project properties and start Linked Data extension. Only one search field will be
present on http://localhost:5000/.

http://localhost:5000/entity?uri=http://data.example.org/project/id=PR001-PU023-VAL071
http://localhost:5000/entity?uri=http://posccaesar.org/rdl/RDS327239
http://posccaesar.org/rdl/RDS327239
http://localhost:5000/

