

.15926 Editor

Version 1.4

Volume 2

APIs of Scanner and Builder

Welcome to the .15926 Editor. This free software is distributed by TechInvestLab.ru “as is” without
any warranties or obligations, for testing purposes. Use it and enjoy at your own risk. Please send

bug reports, usage and licensing questions or suggestions to dot15926@gmail.com .

February 23, 2013

mailto:dot15926@gmail.com

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 2

Volume 2. APIs: Scanner and Builder

Contents

License ...4
8. SearchLan.15926 ..5

8.1. Query Functions ..5
8.1.1. SearchLan general syntax ...5
8.1.2. SearchLan functions details ..6

Find ...6
Show ...6
Check ..7

8.1.3. Special value void ...7
8.1.4. Special value any..7
8.1.5. Special value wrong ..8
8.1.5. Set operations ..8

8.2. Keys and Values ...8
8.2.1. Key type ...9

Search for Part 2 type instances..9
Search for template instances ... 10
Search by class .. 12

8.2.2. Keys id and collection ... 12
8.2.3. Role property keys .. 13

Search for instances of Part 2 type .. 13
Search for template instances ... 14

8.2.4. Annotation and literal property keys ... 14
Annotation search... 14
Literal property search .. 15
Annotation and literal property key values .. 15

8.2.5. Custom object property keys ... 17
8.2.6. Universal keys .. 18

Key object .. 18
Key literal ... 19
Key name... 20

8.2.7. Modifiers .. 20
Modifier out .. 20
Modifier groupby... 21

8.3. Pattern search... 23
About patterns .. 23
Pattern search keys .. 24
Pattern search output ... 25
Universal keys in pattern search.. 26

8.4. Search in template definitions .. 26
Identifying templates ... 27
Search by role restriction .. 27

8.5. Search in verification and reasoning ... 28
8.6. Defining inheritance ... 30
8.7. Non ISO 15926 sources .. 31
8.8. SPARQL endpoint search .. 32

SPARQL query ... 32
Search for URI ... 33
Search for RDS/WIP URIs .. 34

9. Builder.15926 .. 35
9.1. Builder function calls ... 35
9.2. Universal call .. 36

9.2.1. Key type ... 36
9.2.2. Key id ... 37
9.2.3. Role property keys .. 37

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 3

9.2.4. Annotation property keys... 38
9.2.5. Literal property keys.. 38
9.2.6. Object property keys ... 39
9.2.7. Key edit .. 39
9.2.8. Delete key .. 40

9.3. Create call .. 40
9.4. Change call ... 41

9.4.1. Add role call ... 41
9.4.2. Add annotation call ... 42

9.6. Delete call ... 42
9.7. Template definition builder ... 42

9.7.1. Template call .. 43
9.7.1. Template role call ... 43

Other documentation volumes:

Volume 1. Getting Started

Volume 3. Extensions
Volume 4. Patterns and Mapping

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 4

License

Parts of .15926 Editor (built-in extensions and extension samples) are released as a source code
under the BSD 2-Clause license.

Copyright 2012 TechInvestLab.ru dot15926@gmail.com

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions

and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Other parts of the software (released in binary and in text form) are not covered by the

license above and are distributed "as is" and free of charge for evaluation purposes only!

Elephant icon by Martin Berube is used for .15926 software according to terms at

http://www.iconarchive.com/show/animal-icons-by-martin-berube/elephant-icon.html

mailto:dot15926@gmail.com
http://www.iconarchive.com/show/animal-icons-by-martin-berube/elephant-icon.html

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 5

8. SearchLan.15926

8.1. Query Functions

API functions of various .15926 Platform components are available in the Python console of

the .15926 Editor and can be used in the Editor's extensions. For general information about
Python console usage please refer to Volume 1. Getting Started, script examples can be found
there also. Extensions of the Editor are described in Volume 3. Extensions.

API of Scanner component (called also SearchLan.15926) is described in this section of the
documentation.

8.1.1. SearchLan general syntax

For all data sources containing a reference and project data (including template definitions), two

query functions find and show are available in a Python console. Data source must be compliant
to RDF/OWL serialization of ISO 15926 data supported by the .15926.

You can fully rely on the search results for reference and project data from local file data source
only. Searches for reference and project data from SPARQL endpoint are limited to the data

already downloaded for local storage; therefore results may be severely incomplete. Some
capabilities to improve search at endpoints are described in the corresponding section.

If "Error: name '…' is not defined" error message is displayed in the console history panel –

check whether indeed reference and project data source is open in your active panel or in a
module you are addressing in your code.

General syntax for SearchLan functions is:

find(key=value)

show(key=value)

or

find(key1=value1, key2=value2, …, keyN=valueN)

show(key1=value1, key2=value2, …, keyN=valueN)

Function show also accepts a variable name:

show("var", key=value)

show ("var", key1=value1, key2=value2, …, keyN=valueN)

Some keys can be used with modifiers instead of values or in addition to values:

key=modifier

key=modifier==value

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 6

Double vertical quotation marks " are used as string delimiters in examples below. According to
Python language rules it is possible to use double and single quotation marks interchangeably.

Note that the construct "" is two quotation marks in succession and signifies an empty string.

Unless stated otherwise all query examples below are run on local copy of PCA RDL – file
RDL.owl downloadable from http://rds.posccaesar.org/downloads/PCA-RDL.owl.zip .

Some ISO 15926 data sources are really large and complicated queries can take a long time

to complete. Use File-Stop task (Ctrl+B) menu command if you are waiting too long (direct

SPARQL queries to an endpoint can not be interruptd by Ctrl+B though).

8.1.2. SearchLan functions details

Find

Function find searches the data source opened in the active panel for all entities matching listed
conditions (where key equals value or belongs to value set). Found entities are returned to Python

console environment as a set of strings – Python set object set(["str1", "str2", ...]). This set can
be assigned to a named variable for further use, for example:

result = find(label=icontains("celsius"))

Strings in the returned set are either URIs of found entities (including type URIs if requested) or

values of found annotation and literal properties, depending on the query target (see modifier out
below). Function find is intended for use in nested queries in complex Python console scripts or in
extensions.

Show

Function show returns the same results as find and also renders a search result for visual
exploration in the active data source panel under the grouping node. The name of the node will be
just Found: with a counter. The property grid for such node contains the full text of a query and

allows copying.

If function is used with a variable name:

show("var", key=value, …, keyN=valueN)

then "var" is used to name search result node in the panel, and set of query results is assigned to

the var variable for further use in console environment (only if var is a valid Python name,

particulary if it doesn't contain spaces). If cursor focus is on the search result node – the grid
shows the query used to form this node.

For example, the query:

show("res_cels", label=iendswith("celsius"))

returns all entities in the current graph whose label ends with "celsius" and shows them under a
node named res_cels, at the same time a set variable res_cels becomes available for further work.

The query:

show(type=part2.Scale)

http://rds.posccaesar.org/downloads/PCA-RDL.owl.zip

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 7

searches for all instances of Part 2 type Scale and places them under an unnamed node.

The query:

show("res_scales_cels", type=part2.Scale, label=iendswith("celsius"))

combines conditions from two previous examples to create a new search result node and a set
variable res_scales_cels.

Function show should be used only at the top level of a query, call find function inside nested
queries, or you'll get extra unnecessary nodes in the output.

Function show can be used only for data source open in active panel. Use function find with with
context(…) wrapping to get data from one data source for use in searches in another data source.

Check

For nested queries an additional function check exists in SearchLan with the same syntax as find.

If find is used inside another find or show – then innermost function is called first. If check is
used instead of inner find – check is called after outer find or show. Search results returned will
be the same, but execution speed can be optimized by careful use of check. Try check if you are

restricting some annotation property by logical condition (see below for details).

For example, the first query:

show(type=part2.Classification, hasClassifier=find(label=icontains("UOM")))

will be executed by looking for all entities whose label contains substring "UOM" first, and then will
look for all instances of Classification relationship where these entities are in hasClassifier role.

The second query

show(type=part2.Classification, hasClassifier=check(label=icontains("UOM")))

will start by looking for all instances of Classification in a data source, and then filter them by the
label of the entity in hasClassifier role. Depending on the data source the first or the second query

can be more optimal.

Function check can be combined with logical NOT operator, show and find do not allow this. Use

–check(condition) in a query to find all entities for which condition is wrong.

For example, query:

show(type=-check(type=part2.ClassOfIndividual))

returns all entities which are not typed by Class type or any of its subtypes.

8.1.3. Special value void

Special value void can be used with any key to search for entities where this particular key is
missing for an entity (whether it is type, role or annotation). Below you will find examples of void
used with each appropriate key type.

8.1.4. Special value any

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 8

Special value any can be used with any key to search for entities where this particular key is
present with any value, but is not void. For example, show(id=any) will show all entities which

are subjects in the data source.

8.1.5. Special value wrong

Special value wrong can be used with an id key or with role keys to find entities which are not
passing built-in verification tests of the Editor. More about verification tests can be found in

Volume 1. Getting Started.

Verification of large datasets can take a significant time, so use other queries to restrict verified
entities. Always use special key collection if you want to search for all suspicious entities directly
in the results of other query. Query encapsulated by the collection key is executed first and

narrows the search space before verification starts. For example, never use

show(type=part2.ClassOfIndirectProperty, label=icontains('range'), id=wrong)

use instead:

show(collection=find(type=part2.ClassOfIndirectProperty, label=icontains('range')),

id=wrong)

Search for suspicious entities in role keys can be executed in two formats:

show(type=part2.Classification,

hasClassifier='http://posccaesar.org/rdl/RDS4316259653', hasClassified=wrong)

show(collection=find(type=part2.Classification,
hasClassifier='http://posccaesar.org/rdl/RDS4316259653'), hasClassified=wrong)

8.1.5. Set operations

Standard Python set operations can be used in the SearchLan query or executed in the console
whenever the set objects are returned:

 S1|S2 – set union;
 S1&S2 – set intersection;

 S1-S2 – set difference;
 S1^S2 – set symmetric difference.

Set operation on URI sets always returns an URI set, probable one-element set or an empty set.

8.2. Keys and Values

Available keys (key kinds) for use in calls of find, show and check (with some restrictions) are:

– type – used to specify the types of entities or patterns to look for;
– id – used to restrict the set of URI;
– collection – used to do nested searches in some special cases (see below);
– role property keys – used to specify the role occupiers for roles in relationships,

classes of relationships or template instances;
– annotation property keys - used to specify the values or value ranges for annotation

properties;

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 9

– literal property keys – used to specify the values or value ranges for properties with

XML schema typed values;
– object property keys – used to specify the role occupiers for custom object properties;
– universal keys – used to restrict all roles or all properties of required entities;
– pattern role keys – used to specify the patterns role occupiers.

8.2.1. Key type

Key type is used to specify the type for required entities. This key allows to restrict search either
by specific entity types defined in ISO 15926-2 (Part 2) lifecycle integration schema, or by
particular template. URIs of non-ISO 15926 entities can be used also, allowing search in other

ontologies.

A value for type key can be specified directly as a single URI string or as an URI set object,
obtained as a result of another query or through a set operation on other sets.

For example:

show(type="http://rds.posccaesar.org/2008/02/OWL/ISO-15926-
2_2003#ArrangedIndividual", label=icontains("pump"))

show(type=set(["http://rds.posccaesar.org/2008/02/OWL/ISO-15926-
2_2003#ArrangedIndividual", "http://rds.posccaesar.org/2008/02/OWL/ISO-15926-

2_2003#AssemblyOfIndividual"]) , label=icontains("pump"))

For specific types (Part 2 or templates) type key value can be specified as a name with a module
prefix, as described below.

If type key value in a query for template instances is specified as full URI of a template (or URI
set), it is forbidden to use in this query any role or object property keys. There is no such
restriction if type value is specified with module prefix.

Search for Part 2 type instances

For reference to Part 2 types type names with fixed module name prefix part2 can be used as
type key values. Type names are CamelCase type IDs as defined in Part 7. Such queries will
work with data sources which use any one of three Part 2 namespaces known to the Editor:

PCA RDL
http://rds.posccaesar.org/2008/02/OWL/ISO-15926-2_2003# ;

RDS/WIP
http://dm.rdlfacade.org/data# ;

ISO 15926-8
http://standards.iso.org/iso/ts/15926/-8/ed-1/tech/reference-data/data-model# .

Examples of type queries:

show(type=part2.Specialization)

show(type=part2.ClassOfArrangementOfIndividual)
show(type=part2.Scale)

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 10

The Scanner expects that entity types are identified in a data source by rdf:type property with URI

formed from CamelCase ID in one of three supported namespaces listed above. Particular
namespace used in the data source should be registered as Part 2 namespace in the data source

property grid (click at the data source name root node in a panel then find the field in the grid).

Search in PCA RDL requires that the namespace "http://rds.posccaesar.org/2008/02/OWL/ISO-
15926-2_2003#" is registered as Part 2 namespace in the PCA RDL property grid (it is so by

default).

If types of entities in a data source are not identified correctly, it will be necessary to look at the file
content and try to determine the way Part 2 types are identified and assigned to entities, then edit

this field in the grid.

Special type modifier any can be used to search for instances of some Part 2 type and all its
subtypes:

show(type=part2.any.ClassOfArrangedIndividual)

will search for all instances of ClassOfArrangedIndividual or its subtypes.

The query:

show(type=part2.any.Thing)

will look for all typed entities in a data source file. If some or all entities in a data source have no

names assigned as labels or annotations known to the Editor, name query in a search field at the
top of a panel will not find them. In this case you can use URI search or use the console query
above to identify some content in such data source.

Search for template instances

The simplest way to search for template instances is to use template URI as a value for type key
as described above. However it is forbidden to use in such query any role or object property
keys – the Editor will not be able to identify correctly the source for template definitions. There are

no restrictions on property keys and some additional possibilities are open if corresponding
template definition data source is present in the project and registered as a module before
searching for instances of its templates.

Of one or more data sources (files or SPARQL endpoints) with template definitions are preset in
the project, click on the project node in Project panel, look for Modules field in the property grid
and double-click Value field. To add a new module name enter a new name in a key field (use

only alphanumerical identifier starting with a letter and containing no spaces). The Editor will mark
the entry as incomplete. Click on the drop-down menu and choose a data source. The Editor will
mark as errors all non-unique module names, and will check whether the name is formed

correctly! If any mistakes are found – The Editor will not allow you to save properties.

If standard Proto and initial set templates file… is opened through File – Add file(s)… menu, it is
assigned module name p7tpl by default.

If definitions of some templates are available from SPARQL endpoint, you've to do the following to

facilitate search for instances of these templates:

 add endpoint to the project;

 assign it a module name;

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 11

 open data source and run All templates from data source command from Search menu or

from a Toolbar.

When module registration is completed, data source (local file) can be searched for instances of
templates defined in this module. The search is done by using key-value pair
type=<module_name>.TemplateName.

Add template set file p7tpl_enhanced.owl from folder <samples>\tablan (drop it one the Project
panel). Assign it a p7tpl module name.

Add to the project Example_One.rdf file from the same folder. This file contains results of the
TabLan to ISO 15926 model transformation; refer to Volume 3. Extensions for more details.

Open Example_One.rdf data source in a panel with double click.

Run the following queries for Example_One.rdf:

show(type=p7tpl.DescriptionByInformationObject)

show(type=p7tpl.ClassOfArrangementOfIndividual)

Special type modifier any can be used to search data source for instances of all templates defined
in a particular module. Notice that syntax differs from that for the Part 2 types – templates do not
form a hierarchical tree.

For example:

show("all_insts", type=p7tpl.any)

will find in the file Example_One.rdf all template instances of templates defined in p7tpl module.

Modifier any can be also used to search for instances of template and all templates specialized
from it (recursively). For example,

show(type=iiptpl.any.ClassificationOfIndividual)

will find all instances of template ClassificationOfIndividual and all instances of its more then 40
specializations (this example is for template definitions in IIP sandbox, not for Example_One.rdf).

Annotation property keys (see below) can be used together with type key with any modifier. The

query:

show(type=p7tpl.any, annSource=icontains("data"))

will return from Example_One.rdf all instances of all templates having annSource property with

substring "data" in annotation property value.

Use of role property keys (template roles with type or class restrictions) with modifier any
will deliver incomplete results for some template sets (those with separate URIs for parent
and specialized template roles).

File p7tpl_enhanced.owl with template definitions used in TabLan import contains a full set of
p7tpl initial set templates and only one additional template. As URIs of common templates in two
modules are the same, it is possible to add p7tpl initial set module to the Project panel (through

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 12

File – Add file(s)…- Proto and initial set templates file…) and run another query for the same data

source Example_One.rdf:

show("all_stand_insts", type=p7tpl.any)

This search will reveal all standard template instances, but miss all instances of one additional
template. The difference can be shown by a query using set difference operation:

show(id=all_insts - all_stand_insts)

Search by class

In some data sources rdf:type may be used to record classification relationship from reference
data classes or contain non-ISO 15926 entities. To search for arbitrary URIs in rdf:type property
values you can use expressions with logical conditions for strings (listed in the section 8.2.4).

For example, query:

show(type=icontains("http://posccaesar.org/rdl/"))

will look for all entities in your data source which are classified by entities from PCA RDL
namespace.

8.2.2. Keys id and collection

Key id is used to restrict the search by the URI set.

The set of values for id key can be specified directly as a single URI string or as an URI set,
obtained as a result of another query, or through a set operation on other sets.

Direct specification of a single URI (return to PCA RDL file to run the following examples):

show(id="http://posccaesar.org/rdl/RDS1322684")

Direct specification of an URI set:

show(id=set(["http://posccaesar.org/rdl/RDS1322684",
"http://posccaesar.org/rdl/RDS1322549"]))

Set operation can be used to unite and visualise results from two queries. One example was
provided above at the end of previous section. Another query:

show(id=find(label=icontains("celsius")) | find(label=icontains("fahrenheit")))

will return all entities whose label contains substrings "celsius" or "fahrenheit".

Expressions with special logical conditions for strings (listed in the section 8.2.4) can be used as
values for id key also, which may be useful in case of human-readable URIs. For example, the
query like the following one:

show(id=icontains("non-person-interpretable_identifier"))

will be able to find URIs of the kind proposed in Part 6.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 13

There is a special key collection which is essentially equivalent to an id key. This key allows
combination of several searches by URI sets – search in the results of the other search. For

example, there are two ways to search for entities with a label containing two substrings:

show(id=find(label=icontains("celsius")) & find(label=icontains("degree")))

show(id=find(label=icontains("celsius")), collection=find(label=icontains("degree")))

The search defined in the collection key is always executed first. Therefore collection key

should be always used for verification of some subset of data entities. It allows narrowing the set
of verified entities before the start of verification. For example:

show(collection=find(type=part2.ClassOfIndirectProperty), id=wrong)

8.2.3. Role property keys

Role property keys are used in SearchLan to specify search restrictions on object roles of

relational type instances – relationship, class of relationship or template instances.

Role property keys include all roles of relational Part 2 type instances (for example, hasClassifier,
hasApproved, hasWhole or hasEnd1Cardinality).

Template role names are used as role property keys in searches for template instances if these
roles are restricted by Part 2 types or by RDL items in template definitions (i.e. not by XSD
schema types).

The set of values for a role property key can be specified directly as a single URI string or as an

URI set, obtained as a result of another query, or through a set operation on other sets.

Search for instances of Part 2 type

Example of direct specification of role property key value for Part 2 type instances:

show(type=part2.Classification,

hasClassifier="http://posccaesar.org/rdl/RDS1322684")

returns all instances of Classification where class DEGREE CELSIUS is a classifier.

Query:

show(type=part2.Classification,

hasClassifier=set(["http://posccaesar.org/rdl/RDS1322684",
"http://posccaesar.org/rdl/RDS1322549"]))

returns all instances of Classification where classes DEGREE CELSIUS or DEGREE

FAHRENHEIT are classifiers.

Query:

show(type=part2.Classification, hasClassifier=find(type=part2.Scale))

returns all instances of Classification where classifier is an instance of Scale.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 14

Queries:

show(type=part2.Scale, hasDomain=void, hasCodomain=void)

show(type=part2.ClassOfIdentification, hasPattern=void)

return all instances with incomplete data model – with undefined mandatory roles. Open any entity
in the results of these searches. You will see error sign on Properties group.

In the absence of type key role property keys are by default interpreted as roles of relational
Part 2 types, therefore it is possible to omit type key and search by role property key only. Be

aware that some relational types have unique role names, but some inherit role names from
supertype.

For example:

show(type=part2.ClassOfIdentification, hasPattern=find(label=icontains("")))

will return all instances of ClassOfIdentification with hasPattern role occupier having proper label.

The query:

show(hasPattern=find(label=icontains("")))

will return all such instances of four relational types: ClassOfRepresentationOfThing and its three

subtypes ClassOfIdentification, ClassOfDefinition and ClassOfDescription.

Search for template instances

If template instances are queried by role occupiers – template definition should be present in the
project with module name assigned. Template definition module has to be accesses to find role
URI by role name. Naming of template definition modules is described in Search for template
instances section above.

Examples below are again given for the file Example_One.rdf included with the .15926 Editor:

show(type=p7tpl.ClassOfArrangementOfIndividual,
hasClassOfPart=find(label=icontains("TR")))

show(type=p7tpl.DescriptionByInformationObject,
hasRepresented=find(label="System 1 Typical Design"))

8.2.4. Annotation and literal property keys

Annotation search

Annotation property keys are used in SearchLan to specify annotation property values or value
ranges. Both instances of Part 2 types and template instances can possess annotation properties.

Annotations available to Scanner are listed in the project property grid or in the data source
property grid as Annotations. Each annotation property is registered there with a unique short

name (used as a search key) and property URI can be viewed in the editing mode. If one short

name is defined for two different properties in project and in data source – URI defined for the
data source will be used.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 15

Specific sets of annotation properties for PCA RDL (file and endpoint) or Part 4 OWL
representation are built in the .15926 Editor and are added by default if these data sources are
open through dedicated commands in File menu. Files imported from TabLan spreadsheet or from

catalog JSON files also have their specific annotation sets. All other data sources are opened with
default set of annotations which includes rdfs:label, rdfs:comment and set of annotation properties

defined in the Part 8 (annUniqueName, annTextDefinition, annSource, annNotes,
annAdministrativeNote, etc.).

Custom annotations used in a file are not automatically recognized at data source opening. If you
know URI of such annotations and want to facilitate search for them – they can be added to a the

source property grid or to the project property grid (if they are used in more then one data source).
Double click the list in Annotations, put new annotations on blank lines as space-separated pairs

name URI. If format is wrong – the Editor will indicate an error and will not allow to save the data.

The Editor will not check whether URI is well formed or not!

For example: extraProperty http://example.org/properties#extraProperty

Added properties are saved in the project description file.

The search with only annotation property key will show template instances possessing referred

annotations if corresponding template definitions module is not present in the project. Template
instances will remain unrecognized objects (shown as not properly typed). Remove all template
definition sources from Project panel and try the following query on the file Example_One.rdf:

 show(annSource=contains(""))

Literal property search

Literal property keys are used in SearchLan to specify values or value ranges of literal properties
– properties restricted by XML schema types.

Some Part 2 type instances may possess literal properties (for example, Cardinality instances
may have hasMaximumCardinality and hasMinimumCardinality, instances of six subtypes of
ClassOfExpressInformationRepresentation may have hasContent property). Template instances

can also possess roles with literal values, to be filled with numbers, strings, dates and times, etc.
(for example, template p7tpl:BeginningOfTemporalPart has role valStartTime restricted by type
xsd:dateTime, template p7tpl:CardinalityEnd1MinMax has roles valMaximumCardinality and

valMinimumCardinality restricted by type xsd:double).

Literal properties available to Scanner are determined by Part 2 type system (available for review
through Data types menu) or by template definitions. To perform literal property search for

template instances template definition data source must be added to Project panel and registered
as module as described in Search for template instances section above.

Annotation and literal property key values

Values for annotation and literal property keys are whole strings to match property values (case

sensitive) or logical conditions with substring and inequality operators:

contains("substr"), icontains("substr") – property value contains "substr" substring, case

sensitive for contains, case insensitive for icontains;

beginswith("substr"), ibeginswith("substr") – property value begins with "substr" substring,

case sensitive for beginswith, case insensitive for ibeginswith;

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 16

endswith("substr"), iendswith("substr") – property value ends with "substr" substring, case

sensitive for endswith, case insensitive for iendswith;

lt(val) – property value is less than val;

le(val) – property value is less then or equal to val;

gt(val) – property value is greater than val;

ge(val) – property value is greater than or equal to val.

For inequality condition Python attempts to convert values of the property searched to the type

represented in condition.

If val is an integer or floating point number, an attempt is made to interpret values of property

searched as numbers, and Scanner will return an error in console history panel if it can not
perform such conversion. For example, looking for a textual annotation property with condition

gt(2) will result in an error if at least one property value has non-digital symbols.

If val is a string in "", then values of a restricted property are interpreted as strings and inequality

is assessed using lexicographical order. Thus it is always possible to restrict a textual property

with condition gt("2"), but remember that "11"<"2" despite the fact that 11>2.

Lexicographical date comparison also has to be performed carefully, as
"2010.12.31"<"2011"<"2011.01.01".

Examples of annotation property queries (for PCA RDL file):

show(label="CUBIC METRE PER NORMAL CUBIC METRE, 0 DEGREE CELSIUS")

show(label=iendswith("Celsius"))

show(label=ibeginswith("degree"))

show(hasStatus=icontains("incomplete"))

show(hasNoteAdmin=icontains("incomplete"))

show(type=part2.Class, hasCreator=icontains("mvs"))

Query for missing annotation property:

show(type=part2.ClassOfScale, hasRegistrarAuth=void)

returns all instances of ClassOfScale where registration metadata is incomplete – information

about registration authority is missing.

Query for entities with missing labels:

show(type=part2.ClassOfClass, label=void)

Query for missing literal property:

show(type=part2.Cardinality, hasMaximumCardinality=void)

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 17

Examples of numeric literal property queries for template instances in the file Example_One.rdf:

show(type=p7tpl.CardinalityEnd1MinMax, valMinimumCardinality="1")

show(type=p7tpl.CardinalityEnd1MinMax, valMinimumCardinality=ge("0"))

show(type=p7tpl.CardinalityEnd1MinMax, valMinimumCardinality=ge(0))

show(type=p7tpl.CardinalityEnd1MinMax, valMinimumCardinality=ge(0.0))

Notice that for the exact role match only string type value can be used, but for the role typed
xsd:double there are three equivalent ways to write inequality condition.

Value conditions for annotation and literal property key can be combined with logical operators:

-condition – logical NOT;
condition1&condition2 – logical AND;
condition1|condition2 – logical OR.

Example for PCA RDL:

show(label=icontains("degree")&-icontains("celsius"))

8.2.5. Custom object property keys

Custom object property keys are used in SearchLan to specify the role occupiers for those

object properties which are used to record relationships in non-reified way, not recommended for
ISO 15926-8 RDF representation.

Unlike role property keys, custom object properties should be registered as Roles in the

properties of a project or of a data source before further use. Each custom object property is

registered there with a unique short name (used as a search key) and property URI can be viewed
in the editing mode. If one short name is defined for two different properties in project and in data
source – URI defined for the data source will be used.

Short names registered in the property grid are used as custom object property keys.

All data sources in the Editor have one custom object property registered by default. It is

subClassOf http://www.w3.org/2000/01/rdf-schema#subClassOf

The set of values for a custom object property key can be specified directly as a single URI

string or as an URI set, obtained as a result of another query, or through a set operation on other
sets.

To see an example of custom object property search add reference and project data file
sample_lookup.rdf from <samples>\ folder.

Do the query:

show(type=part2.any.Thing, subClassOf='http://posccaesar.org/rdl/RDS327239')

The single entity which is registered as subclass of PUMP (from PCA RDL) will be returned.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 18

Or you can search file xyz-corp-rdl-extension.owl located in <samples>\pid with registered

custom object property subClassOf:

show(type=part2.any.Thing, subClassOf='http://www.rdl.xyz-

corp.com/data#Cc40374c0-e864-11e1-aff1-0800200c9a66')

8.2.6. Universal keys

Key object

Universal key object is used to define a restriction for all object properties, without indication

which particular property you are looking for. The value is checked against all type declarations,
all roles of relational Part 2 type instances and all template roles for template instances, all
registered custom object properties. Key object can be combined with other keys.

The set of values for an object property key can be specified directly as a single URI string or as
an URI set, obtained as a result of another query (find or check), or through a set operation on
other sets.

For example, the query:

show(type=part2.any.ClassOfRelationship,
object="http://posccaesar.org/rdl/RDS327239")

returns from PCA RDL all instances of ClassOfRelationship type and all its subtypes where class

PUMP occupies one of the roles.

The query

show(type=part2.any.ClassOfCompositionOfIndividual,
object=find(label=icontains("motor")))

returns all classes of composition where either class of part or class of whole role is occupied by
some entity with "motor" in name.

The query:

show(object="http://posccaesar.org/rdl/RDS8645837")

returns all relational entities where ISO 15926-4 POSSIBLE INDIVIDUAL plays some role.

Universal key object can be used for template instance search in the file Example_One.rdf:

show(type=p7tpl.any, object=find(label="TR-123.2"))

returns all template instances (of any template used) where some role is occupied by an entity
with the label "TR-123.2".

You can again search file xyz-corp-rdl-extension.owl located in <samples>\pid with registered

custom object property subClassOf:

show(object='http://www.rdl.xyz-corp.com/data#Cc40374c0-e864-11e1-aff1-0800200c9a66')

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 19

It is possible to use Part 2 types as values for object property key, if in some non-standard
representation these types are occupying roles in some registered custom object properties. If

namespace for Part 2 types is known, use the query with full URI:

show(object='http://rds.posccaesar.org/2008/02/OWL/ISO-15926-
2_2003#ClassOfInanimatePhysicalObject')

If you want to look for types in any of three predefined Part 2 namespace, use query modelled

like:

show(object=part2.ClassOfInanimatePhysicalObject.uri)

As rdf:type is an object property, for PCA RDL file these two queries will return correspondingly
typed entities.

Key literal

Universal key literal is used to define restriction for some literal or annotation property of an entity,
without knowledge of the specific property name or URI. It is applied to all annotation properties
registered for entities in a data source and to all literal properties defined by Part 2 or by template

definition. Key literal can be combined with other keys.

Values for literal property key are whole strings to match property values (case sensitive) or
special logical conditions listed in the section 8.2.4 above. For a successful match some property

value has to satisfy the whole condition.

Be aware that numerical conditions with integer or floating point numbers are practically useless
here – the Scanner will try to transform values of all literal properties met in the data source to

numeric format and almost certainly will report an error on some text or date string.

The following query for PCA RDL:

show(literal=icontains("air"))

returns all entities where substring "air" is used in definitions, labels, creators names, other string

values of annotations or literal properties.

The query :

show(literal=icontains("motor")&icontains("electric")&icontains("class"))

returns those entities which have in some (one!) property value all text fragments listed in the

query.

If you want to construct a query for an entity which has all text fragments but probable located in
different literals properties – you should search for all required substrings sequentially with nested
find function calls.

For example, modify the previous query to:

show(literal=icontains("motor"), id = find(literal = icontains("electric"), id =
find(literal = icontains("class"))))

and see extra result compared to previous query.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 20

Key name

Universal key name is used to define restriction on a predefined subset of annotation and literal
properties – on properties usually used for human-readable naming of entities. These are the
same properties which are queried by a name search through a search box in data panels.

Key name should not be used in pattern search!

Properties are searched in the following order:

1. rdfs:label

2. pca:hasDesignation
3. dm:hasContent
4. meta:annUniqueName

If the property from this list is present for an entity and doesn't match search restriction,
subsequent properties for this entity are not checked. If property is absent, the search checks for
the next property. The search returns an entity as soon as some property matches the restriction.

Values for name key are whole strings to match property values (case sensitive) or special logical

conditions listed in the section 8.2.4 above. It makes this search more powerful compared to the
name search through search box at the top of a data panel. Search box performs a case-

insensitive search for simple substring, while console search allows a case-sensitive search,

search for beginnings and ends of a name, and logical combination of conditions.

Key name can be combined with other keys.

8.2.7. Modifiers

Modifier out

Modifier out is used on a key if we are searching for a particular property values for entities found
by an unmodified query. Modifier out can be used for property keys in both find and show
SearchLan functions.

Modifier out will be ignored if it is used on a key inside a check function.

For example, query:

show(type=part2.Classification, hasClassified=out,
hasClassifier="http://posccaesar.org/rdl/RDS1322684")

returns set of entities classified by DEGREE CELSIUS, not set of Classification instances as
unmodified query should.

Query:

show(type=part2.PropertyQuantification, hasInput=out,

hasResult=find(type=part2.RealNumber))

returns all properties in RDL which are quantified by instances of RealNumber.

Modifier out can be used simultaneously with value restriction of a same key. For example, query:

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 21

show(hasClassified=out==check(label=icontains("bar")),
hasClassifier="http://posccaesar.org/rdl/RDS4316259687")

returns all Scales classified by ISO TS 15926-4 (2007) UOM CLASS whose label contains
substring "bar".

If modifier out is used on a literal, it adds additional condition "exists" on its value. For example
query:

show(hasCreator=out)

looks like a query without any restriction, but it really returns the list of creators registered for all
reference data entities in PCA RDL (without further links to entities created!).

Some data sources compliant to Part 8 can use annotation property meta:annUniqueName

instead of rdfs:label to store human readable identifications. Try the console query:

show(annUniqueName=out)

It will deliver the list of unique names for all named entities in the file (without links to their URIs!).
This query differs from search for type=part2.any.Thing which returns named and unnamed

entities together.

Query:

show(type=out==part2.any.Thing)

returns all Part 2 types which are instantiated in the data source.

If some template definition data source is registered with module name tpl, then query:

show(type=out==tpl.any)

returns all templates from tpl module which are instantiated in queried project data source.

Query:

show(type=out)

returns all entities which are used as types for entities in a data source, as Part 2 types, templates
or RDL superclasses, OWL types.

Avoid using out more then once on the same level of a query – the software will process only one

modifier, in unpredictable manner.

Modifier groupby

Modifier groupby is used for grouping search results in subgroups by values of key marked with
groupby. Modifier groupby can be used on keys only in show function. Notice that id key doesn't

allow use of groupby.

If modifier groupby is used, the counter in the Found node group title shows the number of

subgroups formed, not the number of entities found.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 22

For example, query:

show(type=part2.Scale, label=icontains("celsius"), hasDomain=groupby)

returns all instances of Scale having "celsius" in label grouped by distinct domains (property

spaces).

Compare to query:

show(label=icontains("celsius"), hasDomain=groupby)

which returns in addition to results of previous query instances of types other then Scale having
"celsius" in label. These other type instances do not have hasDomain property; therefore

additional search results are present on top level outside of any group.

Query:

show(type=part2.ClassOfClass, hasCreator=groupby)

returns all instances of ClassOfClass grouped by registered creator.

Modifier groupby can be used simultaneously with value restriction of a same key. For example,
query:

show(type=part2.Scale, label=icontains("celsius"),

hasDomain=groupby==check(label=icontains("capacity")))

returns those instances of Scale which have "celsius" in label and simultaneously have domain in
property spaces with "capacity" in label. The results are returned grouped by domains.

Next query:

show(type=part2.Classification,hasClassified=out==check(type=part2.PropertyQuant
ification), hasClassifier=groupby==check(type=part2.Scale))

will return all property quantification relationships grouped by instances of Scale that classify them.

Another example:

show(type=part2.ClassOfClassOfComposition, hasClassOfClassOfPart=out,
hasClassOfClassOfWhole=groupby==check(type=part2.DocumentDefinition))

shows whole-part relationships in the domain of document models.

If it is required to use modifier groupby and simultaneously restrict a key by elements of a known

set of URIs, the set value can be assigned to the role key:

key=groupby==set(["URI1", "URI2", …])

For example, the query:

show(type=part2.Classification,

hasClassifier=groupby==set(["http://posccaesar.org/rdl/RDS1322684",
"http://posccaesar.org/rdl/RDS1322549"]))

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 23

returns all instances of Classification where classifier is either DEGREE CELSIUS or DEGREE
FAHRENHEIT scale, grouped by these classifiers.

If grouped search results are assigned to a variable by use of variable parameter in show function,

resulting set consists of URIs pairs – search result URI and grouping node URI – separated with
vertical bar "|".

For example, the query

show("res_list", type=part2.Scale, label=icontains("celsius"), hasDomain=groupby)

assigns to the variable res_list the following set of URI pairs (only part of the set shown):

set([
'http://posccaesar.org/rdl/RDS1322684|http://posccaesar.org/rdl/RDS355859',
'http://posccaesar.org/rdl/RDS14122227|http://posccaesar.org/rdl/RDS14119855',
'http://posccaesar.org/rdl/RDS14152900|http://posccaesar.org/rdl/RDS382049',
…])

where in each pair URI of a Scale instance is before the "|" sign and URI of an entity in

hasDomain role is after it.

Avoid using groupby more then once on the same level of a query – the software will process
only one modifier, in unpredictable manner.

8.3. Pattern search

About patterns

Pattern recognition in data sources is a powerful mechanism of .15926 Platform. Patterns libraries
for the Editor are located in Python files with .py extension, placed in the
<installation_folder>/patterns folder.

Use of patterns in search is described in this section. Released version of .15926 Editor has an
initial set of predefined patterns defined in the library pattern_samples.py. It depends on three
template data sources:

- Part 8 initial set in a module named p7tpl (the file p7tpl.owl accompanying ISO 15926-8 is
included with the distribution in folder <samples>);

- PCA MMT SIG set in a module named projtpl (the work-in-progress version of PCA MMT
SIG set is included with the distribution as templates.owl file in folder <samples>\pid);

- IIP template set in a module named iiptpl available as IIT Sandbox (templates) from Files

menu.

Users can get more pattern libraries as we release them, expand existing patterns and add new

patterns. Please refer to Volume 4. Patterns and Mapping for more details.

Initial set of patterns is built on the basis of RDF predicates, Part 2 types, Part 8 initial template set
and PCA MMT SIG proposed template set (the set currently discussed by the Special Interest

Group Modelling, Methods and Technology of POSC Caesar Association and available at
http://15926.org). Use of pattern definitions depends on template definitions being added to the
project and assigned module names specified in pattern definitions. An absence of a registered

template definition module will lead to inability to recognize some patterns.

http://15926.org/

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 24

Remember that data panel pattern visualization options set in the project properties (as described
in Volume 1. Getting Started) do not influence your ability to search for all patterns from all

pattern libraries present.

For use with the initial patterns Part 8 template set module name should have a name p7tpl, and
PCA MMT SIG template set module name should be mmttpl

Part 8 initial set is included with the distribution as p7tpl.owl in folder <samples> and should be

opened through menu File – Add file(s)…- Proto and initial set templates file…The version of PCA

MMT SIG set (with some namespace changes for compatibility) is included with the distribution as
templates.owl file in folder <samples>\pid.

Pattern definitions can be changed without closing of the Editor and reloaded with File - Reload

patterns menu command (Ctrl+Shift+W). New patterns will appear in Patterns node groups of
your data sources after the reload, but you should reload (F5) those entities where Patterns node

group was already expanded!

Pattern search keys

In pattern search pattern names and pattern option names are used as type key values, and
pattern role names are used as pattern role keys to restrict your search.

Available pattern names can be found by patterns command in console (make sure that

reference and project data source is open in active panel).

Pattern role names and option names for a pattern can be found by patterns.<PatternName>
command in console. If some options are listed as Unnamed_N – pattern search can not be

restricted to these options.

General syntax for pattern search is:

show(type = patterns.PatternName, patternRole1=value1, …, patternRoleN=valueN)

find(type = patterns.PatternName, patternRole1=value1, …, patternRoleN=valueN)

If only PatternName is specified, the search will look for all options in the pattern. To restrict
search by only one option – specify also an OptionName:

show(type = patterns.PatternName.OptionName, patternRole1=value1, …, patternRoleN=valueN)

find(type = patterns.PatternName.OptionName, patternRole1=value1, …, patternRoleN=valueN)

If one of the options in a pattern is identified as an expansion of the other option, expansion option
can be accessed by using .expansion extension:

show(type = patterns.PatternName.OptionName.expansion, patternRole1=value1, …,
patternRoleN=valueN)

find(type = patterns.PatternName.OptionName.expansion, patternRole1=value1, …,
patternRoleN=valueN)

The set of values for a pattern role key can be specified directly as a single URI string or as an
URI set, obtained as a result of another find or check query, or through a set operation on other

sets.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 25

Pattern search output

Modifier out can be used on pattern role key. Modifier groupby is not allowed for pattern role
keys.

If out is used on a pattern role key, results of show query are visualized as group of found
entities and SearchLan function call returns set of found URIs as usual.

For example, query for PCA RDL:

show(type=patterns.Composition, whole="http://posccaesar.org/rdl/RDS415124",

part=out)

returns all classes of parts for class ELECTRIC MOTOR.

And query:

show(type=patterns.Composition, whole="http://posccaesar.org/rdl/RDS364686618",

part=out)

returns the only individual impeller which is part of the individual PUMP P-101.

These two queries show how the same Composition pattern is defined for ontologically different
entities – a class and an individual.

If out is not used in pattern search, results of show query are visualized as a special tree of
pattern signature groups. For example, execute the query:

show(type=patterns.Specialization, superclass=find(label=icontains("uom class")))

and look at the results. You will see all superclass-subclass pairs where superclass label
containing substring "uom class".

Another example, using .expansion extension to look for patterns corresponding to template
axiom:

show(type=patterns.PropertyOfClass.PropertRangeRestrictionOfClassTemplate.expa
nsion)

If out is not used in pattern search, results of a SearchLan function call are assigned to a variable
in special signature dictionary format:

{
'patternRole1': ['URI11', 'URI12', 'URI13', ...]
'patternRole2': ['URI21', 'URI22', 'URI23', ...]

'patternRole3': ['URI31', 'URI32', 'URI33', ...]
...

}

In this dictionary pattern role names are used as keys, with lists of found URIs as values. All lists
have the same size. If some result is returned with incomplete set of roles (that may be allowed by
some pattern options), special value 'None' will be placed in missing role's list at the

corresponding position.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 26

To obtain for further processing all patterns for an entity or for a group of entities – use special
function call:

patterns.get(URI)

patterns.get(URISet)

This function returns a dictionary of dictionaries, where top-level keys are pattern names and their
values are signature dictionaries in a format described above.

For example, execute in the console:

pat_em=patterns.get("http://posccaesar.org/rdl/RDS415124")
print(pat_em)

and look at the output in the history area.

Universal keys in pattern search

Universal keys object and literal can be used in pattern search. Key name should not be used in
pattern search.

Universal key object defines a restriction for all pattern role keys with object value, without

indication which particular key should be restricted. For example, query:

show(type=patterns.Composition, object="http://posccaesar.org/rdl/RDS415124")

returns all composition pairs where class ELECTRIC MOTOR is part or whole.

Universal key literal defines a restriction for all pattern role keys with literal value, without

indication which particular key should be restricted. For example, query:

show(type=patterns.Identification, literal=icontains("pump"))

returns all identification pairs where literal role contains substring "pump".

Notice that it is possible for a pattern role to have an object value in one pattern options and a

literal value in another pattern options. For examples refer to predefined Identification pattern
description (patterns_samples.py file in <installation_folder>/patterns folder).

8.4. Search in template definitions

Template definitions are processed like regular reference data items starting from version 1.3 of
the Editor, and SearchLan querying capabilities can be fully used for them.

It is possible to search for all types of annotations which can be used in template definitions or in
template role declarations. Template specializations are identifiable through search for
patterns.Specialization.

However there are many important peculiarities of template definition representation. See below
for some instruments and tips for template definition searches.

Experienced Python programmer can extract full data on any template signature from dictionary
<module_name>.<TemplateName>.template and use it in an adapter or in a verification

extension.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 27

Identifying templates

Template definitions are complex RDF subgraphs, and their identification in the data source is not
an easy task. To help in this operation special construct is added to the Scanner API for use from

the Python Console or in extensionы: <module_name>.any .

Its use as type key value for template instance search is described above. To search for template
definitions, use it as id key value. For example:

show(id=tpl.any)

returns all template definitions from a data source with tpl module name.

It can be combined with other literal and annotation property keys, for example the code:

oi = find(id=tpl.any, label=icontains('OfIndividual'))

searches for all templates in tpl module with string 'OfIndividual' as part of a name, and assigns

this set of URIs to oi variable.

For quick searches another Console command can be used to render templates in the active data
source view. Executing templates() in the console, you will see group of all template definitions

from the current data source (equivalent to All templates from data source menu command or
Toolbar button). If used with a string argument – this command will show all templates with this
substring as part of a name or of an URI (case-insensitive).

For example, use Console command:

templates('OfIndividual')

to see all templates in the active data source with string 'OfIndividual' as part of a name or URI.

Search by role restriction

Set of RDF triples describing role restriction for a particular role in a particular template is quite

complex. Function:

<module_name>.tplrole(restriction, restricted_by_value_flag)

looks in <module_name> data source for templates with role (any role) restricted by restriction
type or class, looking for restriction by value if restricted_by_value_flag is set to True.

For example, add IIP sandbox (templates) SPARQL endpoint through File menu, click project
node in Project panel and assign to this endpoint tpls module name. Press All templates from
data source button on the toolbar (SearchLan query for an endpoint is looking only for already

downloaded data).

The command:

show(id=tpls.tplrole(part2.PossibleIndividual))

returns all templates where the role (some role) is restricted by PossibleIndividual type.

The command:

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 28

show(id=tpls.tplrole('http://rdl.rdlfacade.org/data#R247D172D2BE945A7814ADE2FF3A65A67', True))

returns the templates where the role (some role) is restricted by value with ACTUATOR

DESCRIPTION class.

The command:

show(id=tpls.tplrole('http://www.w3.org/2001/XMLSchema#string'))

returns all templates where the literal role (some literal role) is restricted by XSD type string.

8.5. Search in verification and reasoning

While general-purpose OWL reasoning tools application to ISO 15926 data remains a problem,
search language developed as part of .15926 Platform allows to build some special-purpose
verification tools.

.15926 Editor built-in verification tests with rules encoded using SearchLan are described in

Volume 1. Getting Started. These tests can be accessed from the Console using special value
wrong documented above. Below you will find more tests implemented as queries or whole
scripts which can automate some specific problem identification for PCA RDL. Even more such

queries can be built from rules present in the standard itself, using mandatory requirements for
data entities.

Other queries below are generated from template axioms. These are illustrating pattern

recognition (already used in Editor's pattern search) usage for "template contraction" – reverse
operation to template expansion, often necessary for pattern mapping process.

a. Quantified properties

The following set of queries closely follows structure of p7tpl:RealMagnitudeOfProperty template

axiom. This is an attempt to verify important and voluminous part of RDL content required by the
ISO 15926-2 approach to property modelling.

The first query shows all instances of Property:

show("all_prop", type=part2.Property)

The second query shows all properly quantified instances of Property:

show("quant_prop", type=part2.PropertyQuantification, hasInput=out,
hasResult=find(type=part2.RealNumber))

The third shows quantified instances of Property which have Scale properly defined:

show("scaled_prop", hasInput=out, id=find(type=part2.Classification,
hasClassifier=find(type=part2.Scale),
hasClassified=out==check(type=part2.PropertyQuantification,

hasResult=find(type=part2.RealNumber))))

The query

show(id=all_prop - quant_prop)

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 29

returns all instances of Property which are not properly quantified by relating them to numbers.

The query

 show(id=quant_prop - scaled_prop)

returns instances of Property which are quantified but Scale for the quantification is missing.

b. Object information models in RDL

Structure of this query closely follows p7tpl:IndirectPropertyScaleReal template axiom, but for
classes on individuals, not for individuals. This query shows all classes of individuals which have

in RDL a non-trivial object information model – non-empty set of indirect properties quantified by a
single number (point value):

show(type=part2.ClassOfIndirectProperty, hasClassOfPossessor=groupby,
hasPropertySpace=out==find(type=part2.Classification, hasClassifier=out,

hasClassified=find(type=part2.PropertyQuantification, hasInput=out,
hasResult=find(type=part2.RealNumber))))

c. Classification errors

This is the most complex test and the one which really uses Part 2 data model.

Part 2 contains many restrictions on class membership. Unfortunately they are mostly expressed
in natural language and only part of them had found their way into the formal OWL model
described on https://www.posccaesar.org/wiki/ISO15926inOWLPart2EntityMembership. Available

formal restrictions are imported into the data model, augmented as described in Volume 1, and
can be accessed in .15926 Editor environment, making it possible to automatically generate tests
for correct class membership.

The following code cycles through all classifier classes in the RDL except instances of
DocumentDefinition and RepresentationForm (for these two class membership restrictions are not
obvious).

It takes the type of the classifier class and finds the set of all allowed types for its members, using
internal representation of Part 2 membership restrictions encoded in the Editor. Then it takes the
set of types of real members for classifier class analyzed and checks whether it is a subset of a

set of allowed types. If not - there is a classification or typing mistake.

import iso15926.kb as kb
from graphlib import compact_uri, expand_uri, curi_head, curi_tail

def GetClassified(uri):
 result = set()
 curi = compact_uri(uri)
 name = curi_tail(curi)
 entry = kb.part2_itself["part2:" + name]
 classified = entry.get("classified")
 if classified:
 for v in classified:
 entry = kb.part2_itself[v]
 result.add(expand_uri(curi_head(curi)) + entry['name'])
 return result

def GetSubtypes(uriset):
 result = set()

https://www.posccaesar.org/wiki/ISO15926inOWLPart2EntityMembership

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 30

 for uri in uriset:
 name = uri[max(uri.rfind('#'), uri.rfind('/'))+1:]
 if isinstance(getattr(part2.any, name).uri, set):
 subtypes = getattr(part2.any, name).uri- set([getattr(part2, name).uri])
 result |= subtypes
 return result

all_classifiers=find(type=part2.Classification, hasClassifier=out)
docds= find(type=part2.Classification, hasClassifier=out==find(type=part2.DocumentDefinition))
rfrms= find(type=part2.Classification, hasClassifier=out==find(type=part2.RepresentationForm))

classifiers= all_classifiers-docds-rfrms

show(id=classifiers)

mist=set()
counter=0
for classifier in classifiers:
 counter+=1
 print(counter)
 classifier_type=find(id=classifier, type=out).pop()
 classified_type_must=GetClassified(classifier_type)
 classified_types_must= GetSubtypes(classified_type_must)
 classified_types_must |= classified_type_must
 classified_types=find(id=find(type=part2.Classification, hasClassifier=classifier, hasClassified=out),
type=out)
 if classified_types&classified_types_must != classified_types:
 mist.add(classifier)
show(id=mist)

d. Specialization errors

This simpler query shows only classes of classes of individuals specialized from classes of

relationships:

show(type=part2.Specialization,
hasSubclass=groupby==find(type=part2.any.ClassOfClassOfIndividual),

hasSuperclass=out==find(type=part2.any.ClassOfRelationship))

This query shows classes of relationships specialized from classes of classes of individuals:

show(type=part2.Specialization,
hasSubclass=groupby==find(type=part2.any.ClassOfRelationship),

hasSuperclass=out==find(type=part2.any.ClassOfClassOfIndividual))

8.6. Defining inheritance

Entities can inherit relationships and properties from their classifiers, superclasses and temporal
wholes. Inheritance rules for ISO 15926 data model is rather complex and are not directly

implemented in the .15926 Editor. However it is possible to write Python scripts specifying rules
for the collection of inherited data and visualize the result.

For example, run the following code for PCA RDL file:

uri = find(label='PRESSURE MAINTAINING VALVE')

result = uri
while uri:
 uri = find(type=patterns.Specialization, superclass=out, subclass=uri)

 result |= uri

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 31

show('superclasses', id=result)
show('parts', type=patterns.Composition, whole=result, part=out)

show('properties', type=part2.ClassOfIndirectProperty, hasPropertySpace=out,
hasClassOfPossessor=result)

This script collects all superclasses for PRESSURE MAINTAINING VALVE and visualizes all
superclasses (with PRESSURE MAINTAINING VALVE class itself), all classes of parts recorded

for the class and its superclasses and all their properties. Such object information model for
PRESSURE MAINTAINING VALVE is relatively rich: with inheritance from 13 superclasses it has
14 recorded relationships with possible parts (2 of them very generic), and 24 possible properties

(only one of them generic).

8.7. Non ISO 15926 sources

With fully functional RDF viewer/editor at the core, .15926 Editor can parse and present any RDF
compliant data set. Visualization of data, as well as type and role conventions, are specifically

tailored for ISO 15926 data, but some analysis of other data sources is still possible. The Editor
can easily handle large data sources which are difficult or impossible to explore in a majority of
publicly available tools.

Scanner allows searches on non ISO 15926 data at least for labels and literal properties.

For example, download and unpack OpenCYC OWL knowledge base from
http://www.opencyc.org/downloads. The file is more then 250 MByte (larger then current PCA
RDL) and is almost impossible to work with on an average computer using Protégé (for example).

Add it to .15926 Editor environment by dropping it on the Project panel

Search by label can be done from the search field at the top of a panel or from console, where
logical and set conditions become available.

show(label=icontains("abnormal"))

show(label=icontains("abnormal")&icontains("cell"))

Search by universal key literal is also useful, allowing search for entities with particular substring
in some literal property, without knowledge of property name or URI:

show(literal=icontains("medical"))

Logical condition for literal property key allows definition of restriction for some literal or
annotation property of an entity, without knowledge of its name or URI. For example, query:

show(literal=icontains("medical")&icontains("private"))

returns entities which have some property with combination of substrings "medical" and "private"

in its value.

Identify some annotation in the descriptions of found entities or directly on OpecCYC concept
description pages. Study property semantics by opening its URI in browser, then register it in the
property grid of a data source among other Annotations:

cycPrettyString http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA

http://www.opencyc.org/downloads

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 32

Now you can do the search by this property value:

show(cycPrettyString=icontains("biological"))

Register in Roles owl:disjointWith property which is still unknown to .15926 Editor:

owlDisjointWith http://www.w3.org/2002/07/owl#disjointWith

and execute the query:

show(label=icontains("cell"), owlDisjointWith=out)

All queries with type, id, annotation or universal keys are available for non ISO 15926 data

source with some knowledge of its content. Object property and pattern queries can be used
after some information on semantics of data model is gathered and used to customize project
settings in the Editor.

8.8. SPARQL endpoint search

In .15926 Editor the main way to obtain data from SPARQL endpoint is search for substrings in
entity labels or URIs performed via search box at the top of a data panel. Data entities found

through such searches are bringing their relationships with them and by unfolding these entities
volume of downloaded data can be increased. Downloaded data can be saved to local file by
Save as… or Save snapshot… commands in File menu. Please note that unsaved downloaded

data are deleted once you close current project or exit the Editor.

Even while downloaded data from endpoint are unsaved, you can use all power of SearchLan

described above to query it. Of course you can never be sure that results of queries are
representative or complete because search is restricted only to downloaded data.

Special functions to download data from SPARQL endpoints are included in Scanner API. This is
just the beginning of SearchLan extension in this direction. To use most of these functions Module

name has to be assigned to SPARQL data source in the project. For example, open PCA
SPARQL endpoint and assign it a Module name pca in the project properties.

SPARQL query

Use SPARQL query forms DESCRIBE and CONSTRUCT to get an RDF graph from an endpoint.
Only SPARQL queries which return RDF graph can be run from Console!

Returned RDF graph is added to the data already downloaded from an endpoint and visualised in
data tree as a search result grouping node for further unfolding and exploration. Data becomes

available for browsing and for further local analysis.

The simple syntax to obtain data from an endpoint and visualise it in an active panel is:

 sparql('''query text''')

Please notice triple single quotation marks ''' (as always in Python, triple double quotation marks

""" can be used as well). According to Python syntax, preformatted really long strings containing
several paragraphs can be put in triple quotation marks, allowing use of familiar-looking query
forms.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 33

For example, the following query for PCA endpoint data source shows all entities with "PUMP"
substring in the designation:

sparql('''

PREFIX RDL: <http://posccaesar.org/rdl/>
PREFIX fn: <http://www.w3.org/2005/xpath-functions#>

describe ?class {
 ?class RDL:hasDesignation ?classDesignation .
 FILTER (fn:contains(?classDesignation, fn:upper-case("PUMP")))

 }
''')

Set of entities returned as subjects in RDF triples can be assigned to a Python variable using

syntax similar to show command:

sparql('var', '''query text''')

To access one or multiple SPARQL endpoints in complex scripts or from extension, different
syntax with module name should be used:

<module_name>.sparql_query('''query text''')

where <module_name> should be assigned to each processed endpoint. Use of this call is similar

to the use of find command.

For example:

result = pca.sparql_query('''
PREFIX RDL: <http://posccaesar.org/rdl/>
PREFIX fn: <http://www.w3.org/2005/xpath-functions#>

describe ?class ?classDesignation {
 ?class RDL:hasDesignation ?classDesignation .

 FILTER (fn:contains(?classDesignation, fn:upper-case("PUMP")))
 }
''')

show(id=result)

assigns the set of URIs of entities found to a variable named result.

Search for URI

To add data from endpoint for further local analysis without use of complex SPARQL queries,

special function of SearchLan can be called:

<module_name>.find_uri(value))

where value is a single URI string or an URI set, specified either directly, or as a variable, or as a
result of another query, or through a set operation on other sets. If you know some URI or URIs

described in the endpoint, this function will download all their relations (triples where they are
subject) and make them available for further search or save.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 34

To visualize the results of the search you can use this function as a value for id key in SearchLan
show function call. Try for PCA endpoint data source:

show(id=pca.find_uri("http://posccaesar.org/rdl/RDS1322684"))

This function can be used in Python scripts to look for data patterns starting from some known
entity.

Search for RDS/WIP URIs

The next function works for PCA SPARQL endpoint only, as special RDF graph is kept at PCA

endpoint containing references to the legacy RDS/WIP URIs (Rnnnnnn numbers). These
references are linked through an RDF predicate http://posccaesar.org/rdl/rdsWipEquivalent.

You can make function call:

pca.find_uri_wip_eq(value)

where value is a single RDS/WIP URI or an URI set, specified either directly, or as a variable, or
as a result of another query, or through a set operation on other sets.

The function returns a Python dictionary containing all found URI pairs in the format:

'http://rdl.rdlfacade.org/data#Rnnnnn' : 'http://posccaesar.org/rdl/RDSnnnnn'

For example, the call:

eq = pca.find_uri_wip_eq('http://rdl.rdlfacade.org/data#R52054275374')

returns:

{'http://rdl.rdlfacade.org/data#R52054275374': 'http://posccaesar.org/rdl/RDS1357739'}

The call:

eq = pca.find_uri_wip_eq(set(['http://rdl.rdlfacade.org/data#R52054275374',
'http://rdl.rdlfacade.org/data#R45527561750']))

returns:

{'http://rdl.rdlfacade.org/data#R45527561750': 'http://posccaesar.org/rdl/RDS357344',
 'http://rdl.rdlfacade.org/data#R52054275374': 'http://posccaesar.org/rdl/RDS1357739'}

You can combine this function with a previous one. The script:

eq = pca.find_uri_wip_eq('http://rdl.rdlfacade.org/data#R52054275374')
vl = eq['http://rdl.rdlfacade.org/data#R52054275374']
show(id=pca.find_uri(vl))

adds to the PCA endpoint data panel a node representing the class with legacy RDS/WIP
identifier http://rdl.rdlfacade.org/data#R52054275374.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 35

9. Builder.15926

9.1. Builder function calls

API functions of various .15926 Platform components are available in the Python console of

the .15926 Editor and can be used in the Editor's extensions. For general information about
Python console usage please refer to Volume 1. Getting Started, script examples can be found
there also. Extensions of the Editor are described in Volume 3. Extensions. Use of scripting in

mapping is also described in mapping specification for TabLan.15926 extension available with this
distribution.

API of Builder.15926 component is described in this section of the documentation.

Builder API is available for local data sources only. Builder API functions could be called in a

number of formats:

 - Universal call:
builder(type=<module_name>.TypeName, id=URI, edit= True/False,
key1=value1, ..., keyN=valueN, delete= True/False)

- Create call:
<module_name>.TypeName(key1=value1, ..., keyN=valueN)

- Change call:

builder.role(id=URI, key1=value1, ..., keyN=valueN)
builder.annotate(id=URI, key1=value1, ..., keyN=valueN)

 - Edit call:
builder.edit(type=<module_name>.TypeName, id=URI, key1=value1, ...,
keyN=valueN)

 - Delete call:

builder.delete(value)
 - Template call:

builder.template(id=URI1, name=value, comment=string, super=URI2, delete=

True/False)
 - Template role call:

builder.role(id=URI1, roleid=URI2, name=string, type=URI3, comment=string,
value=URI4, delete=True/False)

Data created in the data source are the RDF/OWL serialization of ISO 15926 data compliant to
Part 8. Builder API is not available for endpoints yet.

Please remember that changes to the data source through Builder function calls could not

be undone!

If "Error: name '…' is not defined" error message is displayed in the console history panel –

check whether indeed appropriate data source from a local file is open in your active panel or in a
module you are addressing in your code statement.

Double vertical quotation marks " are used as string delimiters in examples below. According to

Python language rules it is possible to use double or single quotation marks.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 36

9.2. Universal call

Universal call for a builder has the following format:

builder(type=<module_name>.TypeName, id=URI, key1=value1, ..., keyN=valueN,
edit=True/False, delete= True/False)

Where key is one of the following keys (key kinds):

– type key;
– id key;
– role property keys;

– annotation property keys;
– literal property keys;
– object property keys;

– edit key;
– delete key.

Builder call returns an URI of an instance created which can be assigned to a variable for further
use.

9.2.1. Key type

Key type is used to specify the type for created entity. A value for type can be specified directly
as a single URI string, as a variable whose value is an URI string, or in a format
<module_name>.TypeName, where:

module_name is a fixed module name part2 or a module name for a template definition
data source registered in the project;

TypeName is an ISO 15926-2 entity type identified by CamelCase ID or a template name
from the corresponding template definition data source;

This function creates an instance of a Part 2 entity type or an instance of a template specified in a

template definition module. An instance is created in the data source opened in the active panel or
in the data source identified via with context(…): statement.

For example:

uri1 = builder(type="http://rds.posccaesar.org/2008/02/OWL/ISO-15926-

2_2003#ArrangedIndividual", label="ind-13456")

uri2 = builder(type=part2.ArrangedIndividual, label="ind-63636")

The query:

show(id = set([uri1, uri2]))

checks that calls were executed successfully.

If p7tpl template definition module is present in the Project panel, the call:

 uri3 = builder(type= p7tpl.ClassOfDefinition)

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 37

creates an unnamed instance of ClassOfDefinition template without any roles and assigns its URI
to uri3 variable.

The builder call will return an error if TypeName is not present in referred module.

If value for a type key is set to some arbitrary URI, an entity will be created with object property
rdf:type with the specified value and without valid Part 2 type, which will not be compliant with
ISO 15926 requirements. If type key value is set to non-well-formed URI, the Editor will try to

interpret it as a fragment identifier for an URI in a default namespace, which may result in a
corrupted data source.

9.2.2. Key id

Key id accepts any string value. If builder is called with id key the new entity gets the specified

string value as its URI. No check is performed whether URI string is unique and well-formed or not.
Non-well-formed URI may be interpreted by the Editor as a fragment identifier for an URI in a
default namespace, leading to further mistakes. Data entity with URI which is not unique or well-

formed can make data source RDF corrupted and uninterpretable!

If id key is not specified URI will be formed in the namespace defined as a Namespace for new
entities for the edited data source according to the rules described in Volume 1. Getting Started:

with fragment identifier made by concatenating prefix string (with default value "id") with the UUID
compliant to RFC 4122 / ITU-T X.667 / ISO/IEC 9834-8.

To change default value of a prefix string for the current data source use
builder.set_uuid_prefix('new prefix') command. For example, to make Editor generate RDS-

UUIDs in the PCA RDL style use:

builder.set_uuid_prefix('RDS')

The prefix will be stored in project description file as data source property.

9.2.3. Role property keys

Role property keys are used in builder function calls to specify object roles of relational type
instances – relationships, classes of relationships or template instances.

Role property keys include all roles of respective relational Part 2 type instances (for example,
hasClassifier, hasApproved, hasWhole or hasEnd1Cardinality). Template role names are defined

in template definition data source.

The value for a role property key can be specified directly as an URI string or as a variable
whose value is an URI string. Remember that all SearchLan queries return URI sets and even one
element set can not be accepted as role property key value.

For example, the following script creates two instances of PossibleIndividual and creates part -

whole relationship between them:

uri4 = builder(type=part2.PossibleIndividual, label='A')
uri5 = builder(type=part2.PossibleIndividual, label='B')

uri6 = builder(type=part2.TemporalWholePart, hasPart=uri4, hasWhole=uri5)

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 38

If the last function call is changed to:

uri7 = builder(type=p7tpl.TemporalWholePart, hasPart=uri4, hasWhole=uri5)

template instance is created instead of Part 2 type instance.

If role property key for particular TypeName is misspelled or otherwise mangled, the key will be
ignored. For template instance any role will be ignored if it isn't defined for this template. However
if for some Part 2 relational type the key identifies some existing role which just doesn't belong to

the type – an inappropriate role will be created. Please take care.

Instances of specialized templates with roles restricted by value are created with such roles
already filled with appropriate value. An attempt to assign another value to such role at instance
creation will be ignored.

9.2.4. Annotation property keys

Annotation property keys are used in builder function calls to specify annotation property values
for entities created. Both instances of Part 2 types and template instances can possess annotation
properties.

For each reference and project data source all annotations available to Builder are listed in the
project property grid and in the data source property grid as Annotations. Each annotation

property is registered there with a short name which is used as an annotation property key.

The value for an annotation property key can be specified directly as a string or as a variable
whose value is a string. For example, function call:

builder(type=part2.ClassOfIndividual, label="CONTAINMENT",
annCreationDate="2013-02-20")

creates a new instance of ClassOfIndividual named CONTAINMENT and specified creation date.

If annotation property key is misspelled or otherwise mangled, the key will be ignored.

Sometimes generation of UUID compliant with RFC 4122 / ITU-T X.667 / ISO/IEC 9834-8 is

required separately from URI generation (for example, to implement JORD ID Specification). Such

UUID can be obtained through function call builder.UUID('prefix') .

For example, to assign a JORD ID Specification compliant R-UUID to a new entity (as a value of
defaultRdsId property) add it to Annotations of a project or of data source as key URI pair
(defaultRdsId http://posccaesar.org/rdl/defaultRdsId). The same R-UUID has to be a fragment

identifier in the URI, which can be done with the following script:

def_id = builder.UUID('R-')

builder(id='http://example.org/rdl/'+def_id, type=part2.ClassOfIndividual,

label="CONTAINMENT", annCreationDate="2013-02-20", defaultRdsId=def_id)

9.2.5. Literal property keys

Literal property keys are used in builder function calls to specify literal property values for
entities created. Some Part 2 type instances may possess literal properties (for example,
Cardinality instances may have hasMaximumCardinality and hasMinimumCardinality, instances of

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 39

six subtypes of ClassOfExpressInformationRepresentation may have hasContent). Template

instances can also possess roles with literal values, to be filled with numbers, strings, dates and
times, etc. (for example, template BeginningOfTemporalPart has role valStartTime restricted by
type xsd:dateTime, template CardinalityEnd1MinMax has roles valMaximumCardinality and
valMinimumCardinality restricted by type xsd:double).

Literal properties available to Builder are defined by Part 2 type system (available for review
through Data types menu) or by template definitions.

The value for a literal property key can be specified directly as a string or as a variable whose
value is a string. For example, function call:

builder(type=p7tpl.BeginningOfTemporalPart, hasPart=uri5, hasWhole=uri6,

valStartTime="2013-02-20 01:23:00.000000")

creates instance of BeginningOfTemporalPart template with two object roles and one literal role.

If literal property key is misspelled or otherwise mangled, the key will be ignored.

9.2.6. Object property keys

Object property keys are used in builder function calls to specify custom object roles used to
record non-reified relationships in way not standard for reified ISO 15926 RDF representation.

Unlike role property keys, custom object property keys should be registered as Roles in the

property grid of a project or of a data source before further use. Short names registered in the
Roles are used as object property keys.

The value for an object property key can be specified directly as an URI string or as a variable
whose value is an URI string. Remember that all SearchLan queries return URI sets and even one

element set can not be accepted as object property key value.

To execute an example below, find custom object property subClassOf property in properties
panel for the project or for the data source. If nor found register it yourself –find Roles row in

project properties, double click it and add a string:

subClassOf http://www.w3.org/2000/01/rdf-schema#subClassOf

The following script creates two instances of PossibleIndividual and creates subClassOf property
to record relationship between them:

uri6 = builder(type=part2.Class, label='classA')
uri7 = builder(type=part2.Class, label='classB', subClassOf= uri6)

9.2.7. Key edit

If builder is called with id key value of an existing URI (specified directly or by a variable) – the

call will edit the entity with specified URI. The nature of changes depends on the value of edit key.
All keys (type, role, literal, annotation and object property keys), their values and usage in calls
with edit key are subject to all the rules described above.

If particular role or literal property key is not allowed by the type of an edited entity, it will be
ignored, except in the situation when type is changed simultaneously (see below)

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 40

If id has existing URI as value and edit key is set to False or omitted, new roles, literal, annotation
or object properties will be added as specified by keys present, even if such roles or properties

already exist. Such call of builder literally adds new roles and properties to an existing entity, it
doesn't check whether such roles or properties already exist and doesn't change values of existing
roles or properties, but creates them again with new values.

Additional value of rdf:type can be assigned by using type key, for example. Multiple annotations

of the same type can be created as well.

If id has existing URI as value and edit key is set to True, new values for existing roles, literal,
annotation or object properties will be added, replacing old values of roles and properties and

deleting multiple values of the same role or property, if any. If there were no such roles or
properties – they will be just added, of course.

If edit key is set to True and key type is set to a new value, all roles specific to old type (as
defined by Part 2 data model or template definition) will be deleted. If the same function call

contains role keys specific to a new type – they will be added as specified.

If edit key is set to True and key type is set to the special value None, all rdf:type properties and
all roles specific to these types are deleted.

If edit key is set to True and any other key (except type) is set to the special value None, all
values of the corresponding role or property will be deleted.

9.2.8. Delete key

If delete key is set to True and id key value is an URI string, a variable whose value is an URI

string, or an URI set – all entities with these URIs are deleted. Effect of a delete function can not
be undone!

9.3. Create call

The following simplified call for builder function is available for creation of new entities:

<module_name>.TypeName(key1=value1, ..., keyN=valueN)

or

<module_name>.TemplateName(role1, … roleM, key1=value1, ..., keyN=valueN)

This call is equivalent to the builder call with type=<module_name>.TypeName.

Role keys, literal, annotation and object property keys, their values and usage are subject to all

the rules described above. Key list may be empty, but do not forget to write the parentheses ()!

The function call:

 uri8 = part2.ClassOfRelationship()

creates unnamed instance of the ClassOfRelationship.

The query:

show(id = uri8)

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 41

checks that this call was executed successfully.

If p7tpl template definition module is present in the Project panel, the call:

 uri9 = p7tpl.ClassOfDefinition()

creates an instance of ClassOfDefinition template without roles.

If you are an experienced Python programmer, you can use built-in Python function getattr() in
your scripts – it allows to call Builder functions if types you need are available as strings or string
variables. For example, the following script is equivalent to the previous example:

type_str = "ClassOfDefinition"
uri11 = getattr(p7tpl, type_str)()

In builder call of this kind role property keys may be omitted for template instances, as templates
have a fixed role order. Role property keys should be omitted for all template roles

simultaneously. Function call should start with a list of role URIs, and all other keys may be placed
after this list.

For example, one of example function calls above can be executed as:

uri10 = p7tpl.TemporalWholePart(uri4, uri5)

9.4. Change call

The following ways to call builder are preserved to keep compatibility with earlier versions of
Builder API.

9.4.1. Add role call

Add role call is available as:

builder.role(id=URI, key1=value1, ..., keyN=valueN)

This call is equivalent to the builder call with edit=False, and key is one of the role property
keys, literal property keys or object property keys.

Add role call adds object or literal property to an already existing instance of Part 2 type or to a
template instance. An edited entity is identified by id key value - an URI string or a variable whose
value is an URI string.

Role property keys, literal property keys and object property keys, their values and usage in

an add role function call are subject to all the rules described above.

Please remember that add role function literally adds new properties to an existing entity, it

doesn't check whether such properties already exist and doesn't change values of existing

properties, but duplicates them with new values.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 42

9.4.2. Add annotation call

Add annotation call has the following format:

builder.annotate(id=URI, key1=value1, ..., keyN=valueN)

This call is equivalent to the builder call with edit=False, and key is one of the annotation
property keys.

Add annotation call adds annotation property to an already existing instance of Part 2 type or to
a template instance. An edited entity is identified by id key value - an URI string or a variable

whose value is an URI string.

Annotation property keys, their values and usage in an add annotation function call are subject
to all the rules described above.

Please remember that add annotation function literally adds new properties to an existing entity,

it doesn't check whether such properties already exist and doesn't change values of existing

properties, but duplicates them with new (or old) values.

9.5. Edit call

Edit call is available as:

builder.edit(type=<module_name>.TypeName, id=URI, key1=value1, ..., keyN=valueN)

This call is equivalent to the builder call with edit=True. Type key, literal, annotation and object
property keys, their values and usage are subject to all the rules described above!

9.6. Delete call

Delete call has the following format:

builder.delete(value)

where value is an URI string, variable whose value is an URI string, or an URI set.

Delete call deletes all entities whose URI's are passed to it. Effect of a delete call can not be
undone!

9.7. Template definition builder

Special functions are defined in Builder API for creation and editing of template definitions in

template definition data sources. Template definition creation functions are useful in conversion of
template definitions from other formats. For example, these functions are used in open-source
built-in extension for import of template definitions from spreadsheet used to populate iRINGTools

software (see Volume 3. Extensions for details).

If URI of existing template or role is referenced in function calls described below, template or role
with this URI will be changed as specified by the call.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 43

If you are modifying templates and creating instances of templates in the same script (quite exotic
situation), new or modified definitions become available for instance creation only after the

function call <module_name>.update_templates() .

For example:

builder.template(name = 'NewTemplate')
mmttpl.update_templates()

inst = mmttpl.NewTemplate()

9.7.1. Template call

Builder API function call to create or edit template definition in template definition data source has
the following format:

builder.template(id=URI1, name=value, comment=string, super=URI2, delete=

True/False)

where keys are:

id – template URI, mandatory for deletion or editing, if missing – URI will be generated

automatically according to data source settings as described above;
name – template name;
comment – comment field;

super – parent template URI for creation of specialized templates;
delete – if True deletes a template specified by id (Builder will not control deletion of parent
templates for specialized templates in a data source).

This call returns URI of a template created.

9.7.1. Template role call

Builder API function call to create or edit template role in template definition has the following

format:

builder.template_role(id=URI1, roleid=URI2, name=string, type=URI3,
comment=string, value=URI4, delete=True/False)

where keys are:

id – template URI;
roleid – role URI, mandatory for deletion or editing, if missing – URI will be generated
automatically as described above according to data source settings (in a data source all

roles with the same name will receive the same URI, if URI is not directly set by this key);
name – role name, mandatory;
type – role type restriction as URI or in part2.TypeName format;

comment – comment field;
value – entity URI for role restriction by value in specialized templates (overrides type key
value);

delete – if True deletes a role specified by roleid.

This call returns URI of a role created.

.15926 Editor v1.4 Volume 2. APIs of Scanner and Builder TechInvestLab.ru

 44

Builder remembers the URI of last template created, therefore id key can be omitted if template
role calls are made immediately after template creation call (this feature doesn't work if calls are

performed from Python console one by one!).

	License
	8. SearchLan.15926
	8.1. Query Functions
	8.1.1. SearchLan general syntax
	8.1.2. SearchLan functions details
	Find
	Show
	Check

	8.1.3. Special value void
	8.1.4. Special value any
	8.1.5. Special value wrong
	8.1.5. Set operations

	8.2. Keys and Values
	8.2.1. Key type
	Search for Part 2 type instances
	Search for template instances
	Search by class

	8.2.2. Keys id and collection
	8.2.3. Role property keys
	Search for instances of Part 2 type
	Search for template instances

	8.2.4. Annotation and literal property keys
	Annotation search
	Literal property search
	Annotation and literal property key values

	8.2.5. Custom object property keys
	8.2.6. Universal keys
	Key object
	Key literal
	Key name

	8.2.7. Modifiers
	Modifier out
	Modifier groupby

	8.3. Pattern search
	About patterns
	Pattern search keys
	Pattern search output
	Universal keys in pattern search

	8.4. Search in template definitions
	Identifying templates
	Search by role restriction

	8.5. Search in verification and reasoning
	8.6. Defining inheritance
	8.7. Non ISO 15926 sources
	8.8. SPARQL endpoint search
	SPARQL query
	Search for URI
	Search for RDS/WIP URIs

	9. Builder.15926
	9.1. Builder function calls
	9.2. Universal call
	9.2.1. Key type
	9.2.2. Key id
	9.2.3. Role property keys
	9.2.4. Annotation property keys
	9.2.5. Literal property keys
	9.2.6. Object property keys
	9.2.7. Key edit
	9.2.8. Delete key

	9.3. Create call
	9.4. Change call
	9.4.1. Add role call
	9.4.2. Add annotation call

	9.6. Delete call
	9.7. Template definition builder
	9.7.1. Template call
	9.7.1. Template role call

