

.15926 Editor

Version 1.4

Volume 4

Patterns and Mapping

Welcome to the .15926 Editor. This free software is distributed by TechInvestLab.ru “as is” without
any warranties or obligations, for testing purposes. Use it and enjoy at your own risk. Please send

bug reports, usage and licensing questions or suggestions to dot15926@gmail.com .

February 23, 2013

mailto:dot15926@gmail.com

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 2

Volume 4. Patterns and Mapping

Contents

License ...3
12. Patterns ...4

12.1. Approach to patterns ...4
12.2. Patterns in the Editor ...5
12.3. Patterns definition..5

12.3.1. Overall pattern structure ..6
12.3.2. Pattern roles ...6
12.3.3. Pattern options ...6

12.4. Examples ..8
12.4.1. Simple pattern example...8
12.4.2. Scolem variable example ..9
12.4.3. URI usage example .. 10
12.4.4. Class restriction example .. 11
12.4.4. IIP pattern modelling ... 11

13. Spreadsheet mapper .. 14
13.1. Mapping basics ... 14
13.2. Mapping and import ... 15
13.3. Saving and restoring the mapping .. 17
13.4. Mapping example .. 17

Other documentation volumes:

Volume 1. Getting Started
Volume 2. APIs: Scanner and Builder
Volume 3. Extensions

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 3

License

Parts of .15926 Editor (built-in extensions and extension samples) are released as a source code
under the BSD 2-Clause license.

Copyright 2012 TechInvestLab.ru dot15926@gmail.com

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions

and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Other parts of the software (released in binary and in text form) are not covered by the

license above and are distributed "as is" and free of charge for evaluation purposes only!

Elephant icon by Martin Berube is used for .15926 software according to terms at

http://www.iconarchive.com/show/animal-icons-by-martin-berube/elephant-icon.html

mailto:dot15926@gmail.com
http://www.iconarchive.com/show/animal-icons-by-martin-berube/elephant-icon.html

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 4

12. Patterns

12.1. Approach to patterns

It is well known that ISO 15926 (and Semantic Web technologies in general) allow for many ways

to express the same ontological relationship between things. Part 2 type instances, base or
specialised templates of unrestricted complexity, OWL relationships or custom RDF properties –
all these constructs can be used in data modelling. Several implementations of ISO 15926 exist

already and more are planned.

Part 2 relational instances, corresponding base templates, core, specialized and any number of
custom templates can be all used to express the same fact (sometimes among other facts) – that
class A is specialization of B, or individual X is part of individual Y, for example. On the other hand,

the same concept of "connectedness" or "identification" can be applied to quite diverse things –to
classes of classes, to classes of individuals, or to individuals – physical objects, events, activities.

Complex multi-role relationship can be expressed as custom template signature, later it can be

expanded (lifted) to expose entities composing template axiom, to base template level, and finally
it can be fully expanded to a complex network of Part 2 type instances. The process of template
'contraction' can go in other direction. Data graphs in this sequence can be also considered as

representations of the same pattern.

Today slightly different concepts of "pattern" are developed by several ISO 15926
communities to utilize an idea of recurring patterns in various domains and of

multiple methods to do the same modelling. Patterns are the cornerstone of PCA
modelling methodology (https://www.posccaesar.org/wiki/FiatechJord), patterns are defined for
use in mapping in ISO 15926 Information Patterns (IIP) project by members of iRING User Group

(http://iringug.org/wiki/index.php?title=ISO_15926_Information_Patterns_%28IIP%29).

Pattern representation technology and tools developed in .15926 project will be able to support
patterns in all possible areas: template expansion/contraction, pattern modelling, pattern mapping,
etc.

For .15929 Platform pattern is a formally defined list of alternative ways (representations) to
express particular ontological relation between two or more entities.

For example, concept of connection between two things can be expressed for various types

of things by usage of six Part 2 type instances (ConnectionOfIndividual, DirectConnection,
ClassOfDirectConnection, ClassOfIndirectConnection, ClassOfConnectionOfIndividual,
IndirectConnection), six corresponding templates from Part 8 initial template set, or through
several templates currently discussed by the Special Interest Group (SIG) Modeling,

Methods and Technology (MMT) of POSC Caesar Association
(ClassOfDirectConnectionDefinition, etc.), available at http://15926.org). One single pattern
"connected to" is based on this list. Two things are considered to form this pattern if they

occupy corresponding roles in any of relational entities listed above.

Pattern recognition in data sources is a powerful mechanism of .15926 Platform. Search for
patterns in SearchLan.15926 (documented in Volume 2) is already supported in the Editor. From

version 1.4 the Editor supports mapping to patterns from Excel spreadsheet. Other pattern-based
instruments will be developed later, including template expansion for data set transformations.

https://www.posccaesar.org/wiki/FiatechJord
http://iringug.org/wiki/index.php?title=ISO_15926_Information_Patterns_%28IIP%29
http://15926.org/

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 5

12.2. Patterns in the Editor

Standardization of ISO 15926 pattern format and mapping rule description language are expected
in the future. Today .15926 Editor keeps patterns libraries as Python dictionaries available as

open source parts of the software.

Released version of .15926 Editor has an initial set of predefined patterns defined in the library
pattern_samples.py. More pattern libraries will be released by TechInvestLab.ru in the future.

User can expand existing patterns and add new patterns as described below. Pattern definitions

can be built using Part 2 types, template definitions and reference data items, and custom RDF
predicates (properties). Pattern structure should be maintained manually now, pattern
management module and GUI for pattern editing will be added in the future versions of the Editor.

Patterns libraries for the Editor are located in Python files with .py extension, placed in the
<installation_folder>/patterns folder. You can add new .py files to this folder or modify existing

patterns definitions.

Always use new files to record new patterns and rename pattern_samples.py file if you are

changing definitions in it. An installer may overwrite it while upgrading the software!

Template definitions used in patterns should be present in the project to facilitate pattern search

and mapping. There template definition data sources in the project should be assigned predefined
specified module names, as documented in the released libraries.

Initial pattern set defined in the library pattern_samples.py depends on three template data
sources:

- Part 8 initial set in a module named p7tpl (the file p7tpl.owl accompanying ISO 15926-8 is
included with the distribution in folder <samples>);

- PCA MMT SIG set in a module named projtpl (the work-in-progress version of PCA MMT
SIG set is included with the distribution as templates.owl file in folder <samples>\pid);

- IIP template set in a module named iiptpl available as IIT Sandbox (templates) from Files

menu.

An absence of a registered module or an absence of particular template definition in a module will
lead to the inability to recognize presence of some patterns for visualization, querying or mapping.

You can edit pattern definitions without closing the Editor and reload them by File-Reload
patterns (Ctrl+Shift+W) menu command. This is useful while testing pattern search or mapping

code.

12.3. Patterns definition

Please refer to the file patterns_samples.py in <installation_folder>\patterns folder while reading

this documetation.

Pattern definitions are recorded using Python dictionary and list notations (please refer to any
Python tutorial for details).

In pattern format descriptions below:

- string value refers to Python strings included in single or double quotation marks;

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 6

- dictionary value refers to Python dictionaries organized as key : value pairs where key is a

string;

- list value refers to Python lists;

- element value refers to elements defined in the project modules as an entity with module

name (like part2.Class or p7tpl.Classification); element values can be written without
quotation marks.

12.3.1. Overall pattern structure

Pattern definitions are stored as the Python list in the local variable patterns. Use
patterns.append method to add new patterns to this list.

Each pattern definition in a list is a dictionary with the following predefined keys with values:

key 'name' with string value – required name of the pattern, any text string without spaces

(use CamelCase or underscores);

key 'signature' with dictionary value – dictionary with pattern role names as keys and string

description of "inverse" roles as values;

key 'options' with list value – list of pattern option definitions (pattern building blocks
representing alternative sets of entities realizing the pattern).

12.3.2. Pattern roles

Pattern signature is a dictionary containing pattern role names and textual description of inverse

relations corresponding to roles, for use in output forms. Role names are used as keys, textual
descriptions as values. To get a sensible output the textual description has to describe relation of
other objects to an object in this role, for example:

'subclass': 'is superclass of'
'identifier': 'is identified by'

where subclass and identifier are pattern roles.

Textual description can be empty: ''.

12.3.3. Pattern options

Each item in pattern's options list contains definition of one specific way the pattern is realized
(one particular way the pattern can be represented in dataset). Each option is independent from
others. Pattern search can look for all options or for one option particularly (if it is named).

Each option is defined by a Python dictionary with the following keys and values:

Pedefined option description keys:

key 'name' with string value – optional name of the option, any text string without
spaces (use CamelCase or underscores), may be omitted;

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 7

key 'expansion' with string value – optional name of another option of the same
pattern which is an expansion for the described option (as axiom for the template

signature, or fully expanded template for template axiom);

key 'parts' with list value – optional list of dictionaries describing individual parts
comprising pattern option.

If an option consists of only one part, the dictionary defining this option directly contains part

description keys described below. If there is more then one part in an option, special key 'parts'
with list value is used on option dictionary. The 'parts' list members are dictionaries describing
individual parts with part description keys.

If 'parts' list is used to define option parts, only keys 'name', 'parts' and 'expansion' are allowed

in the option definition dictionary. Keys 'type' and 'uri', pattern role keys and scolem variable
keys are used in option part definition. Part definition can not have 'name', 'parts' and
'expansion' keys.

Parts of a pattern option should be interconnected by the use of common pattern roles or common
Scolem variables (see below). If pattern is defined in such a way that it can be separated into two
independent components – such pattern will be ignored.

Part description keys include predefined keys, pattern role keys and scolem variable keys.

Predefined part description keys (either 'type or 'uri' key is allowed!):

key 'type' with element, string or list value – specifying type or classifier class
(several classifier classes) for an entity which is a part in focus; classifier may be

any Part 2 type or reference data class;

key 'uri' with string or list value – restricting an entity which is a part in focus to one
particular entity or a set of entities.

Pattern role keys with string values – defining mapping of pattern roles to relations

properties of option parts.

Scolem variable keys with string values – defining mapping of scolem variables to option
parts and their properties.

All keys whose names are not predefined keys or pattern role keys (defined in the
pattern signature) are treated as scolem variable keys, whose function is to show
that the same entity is found to be related in a specified way to some parts of a

single option (described as 'parts').

Values for 'type' key can be URI strings, lists of URI strings, or elements (defined in a particular
module). If referenced module is not loaded, any option referencing it will be ignored. Pattern role
keys can be also mapped to custom object and annotation properties (Roles and Annotations

defined for a project or a data source) of option parts.

Inheritance reasoning is implemented for searches with pattern with 'type' key in one or more
parts. Trying to find entities restricted by 'type' key in pattern searches Scanner module will:

- identify classifiers of an entity using all available options of Classification pattern;
- identify all superclasses of classes defined at previous step using all available options of

Specialization pattern.

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 8

Values of pattern role keys and scolem variable keys can be the following (all represented by
strings):

- a role of a relational entity type or of a template in a module;

- an URI of an object or literal property;

- a short name of a custom object or of an annotation property (defined in Roles and
Annotations of a project or of a data source);

- a special value 'self' signifying that an entity defined in the option part is itself occupying
the pattern role or is a value of scolem variable.

12.4. Examples

12.4.1. Simple pattern example

Let's make a pattern for various ways to record subclass-superclass relationship between classes.

Start with a blank pattern stencil:

patterns.append({
'name': 'Specialization',
'signature': { },

'options': []})

We'll call the pattern Specialization and define signature with two roles named subclass and
superclass:

'signature': {'subclass': '', 'superclass': ''},

If we've found subclass for some entity, this entity become superclass of the found entity, and
vice versa. So we'll formulate descriptions of "inverse" roles as:

'signature': {'subclass': 'is superclass of', 'superclass': 'is subclass of'},

We'll define three alternative representations or options by which this pattern can be realized in

the data set (of course there are more then three ways to record a fact of subclass-superclass
relationship).

The first option to record specialization is to use an instance of base template

p7tpl.Specialization, defined in ISO 15926-7. We'll call this option SpecTemplate. Option
definition is very simple. This option description consists of one part (so no 'parts' key used) –
entity-in-focus is template instance, and pattern roles are directly mapped to corresponding roles

of this template:

{'name' : 'SpecTemplate',
 'type': p7tpl.Specialization,

 'subclass': 'hasSubclass',
 'superclass': 'hasSuperclass',},

The second option to record specialization is on Part 2 level, using instance of Specialization
type linked to classes in question. This option description also has only one part – entity-in-focus

is Part 2 type instance, and pattern roles are directly mapped to corresponding roles of this entity:

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 9

{'name' : '',

 'type': part2.Specialization,
 'subclass' : 'hasSubclass',
 'superclass' : 'hasSuperclass'},

Notice that what we've described as a second option is the representation of a FOL axiom of
p7tpl.Specialization template of the first option.

Generally, once we have a pattern defined with a template, we can automatically generate
additional option in this pattern definition using a FOL axiom of this template. Such functionality

will be added to the Editor in future versions.

Let's make the name of a second option SpecTemplAxiom and add key-value pair to the first
option:

'expansion' : 'SpecTemplAxiom',

which will work as a link from template signature to its expansion.

The third option will use an OWL property instead of reified relationship. As we've discussed
above, one possible way to record class specialization relationship is usage of owl:subClassOf
object property. Corresponding option description looks like:

{'name' : 'SubClProperty',
 'subclass' : 'self',
 'superclass' : 'http://www.w3.org/2000/01/rdf-schema#subClassOf'}

This pattern option is found if some entity has http://www.w3.org/2000/01/rdf-
schema#subClassOf property connecting it to some other entity. Pattern role mapping defines

that in this case property possessor itself is subclass and property value is superclass.

Now let's take all options together:

patterns.append({
'name': 'Specialization',

'signature': {'subclass': 'is superclass of', 'superclass': 'is subclass of'},
'options': [

 {'name' : 'SpecTemplate',

 'type': p7tpl.Specialization,
 'subclass': 'hasSubclass',
 'superclass': 'hasSuperclass',

 'expansion': 'SpecTemplAxiom',},
{'name' : 'SpecTemplAxiom',
 'type': part2.Specialization,

 'subclass' : 'hasSubclass',
 'superclass' : 'hasSuperclass'},
{'name' : 'SubClProperty',

 'subclass' : 'self',
 'superclass' : 'http://www.w3.org/2000/01/rdf-schema#subClassOf'},]})

12.4.2. Scolem variable example

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 10

Look at a pattern option (from PropertyOfClass pattern) illustrating the use of Scolem variable in
a pattern option with two 'parts' elements:

 {'name' : 'PropertRangeRestrictionOfClassTemplateAxiom',
 'parts' : [{'variable1' : 'self',

 'type' : part2.ClassOfIndirectProperty,
 'range' : 'hasPropertySpace',
 'posessor' : 'hasClassOfPossessor'},

 {'type' : part2.Specialization,
 'variable1' : 'hasSubclass',
 'property' : 'hasSuperclass'},]},

This option description consists of two parts, with instances of Part 2 types
ClassOfIndirectProperty and Specialization as entities-in-focus. To join role occupiers of these
two entities in a pattern an entity-in-focus of a first part variable1 (not listed in the pattern

signature) is mapped to the hasSubclass role in a second part which is a Specialization instance.

12.4.3. URI usage example

Look at a pattern example illustrating the use of a particular RDL entity in a pattern:

{'name' : 'SpecializationFromPUMP',
 'signature' : {'subclass' : ''},

 'options' : [
 {'parts' : [
 {'PUMP': 'self',

 'uri' : 'http://posccaesar.org/rdl/RDS327239'},
 {'type' : part2.Specialization,
 'subclass' : 'hasSubclass',

 'PUMP' : 'hasSuperclass'}] },
[{'PUMP': 'self',

 'uri' : 'http://posccaesar.org/rdl/RDS327239'},

 {'subclass' : self,
 'PUMP' : 'http://www.w3.org/2000/01/rdf-schema#subClassOf'}] },
]}

This pattern will be identified for all entities which are specialized from PUMP class
(http://posccaesar.org/rdl/RDS327239).

There are two parts in the first option of this pattern. One part is class with URI

http://posccaesar.org/rdl/RDS327239 representing PUMP. Another part is an instance of
Specialization relationship, in which hasSuperclass role is mapped to the PUMP class, and
occupier of another role is an entity for which this pattern will be identified.

The second option of this pattern has two parts also. The first part is the same PUMP class, and
the second part describes that an entity in focus has PUMP class as a value for rdfs:subClassOf

property.

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 11

12.4.4. Class restriction example

Look at a pattern example illustrating the use of a particular RDL entity as classifier restriction in a
pattern:

{'name' : 'ClassifiedByPUMP',
 'signature' : {
 'classified' : '',

 },
 'options' : [
 {'parts' : [{'classified' : 'self',

 'type' : 'http://posccaesar.org/rdl/RDS327239'},] },
 }

This pattern will be identified for all entities which are members of PUMP class

(http://posccaesar.org/rdl/RDS327239). There are no such entities in the PCA RDL, use data file
sample_lookup.rdf from <samples>\ folder. Execute query:

show(type=patterns.ClassifiedByPUMP, classified=out)

The search for this pattern will use inheritance rules implemented for pattern search and

described above – it will return entities classified by PUMP class, and entities classified by
subclasses of Pump.

12.4.4. IIP pattern modelling

Combining methods of pattern construction described above, let's model a pattern representing

one of the patterns proposed in IIP project of iRING User Group
(http://iringug.org/wiki/index.php?title=ISO_15926_Information_Patterns_%28IIP%29). Look at the
Coating Color pattern described as:

P0003
0

Coating
Color

The color name for the
coating

EXTERNAL COATING AssemblyOfIndividual

1 COLOUR CLASS ClassificationOfIndividual

We can use this pattern to identify relationships in ISO 15926 dataset for import into some

engineering database which has a color list for objects. Or we can use it to create ISO 15926
data set as export from such database. Depending on the goal we'll use pattern search
functionality of Scanner.15926 (available already), or pattern writing functionality of Builder.15926

(see spreadsheet adaptor description below).

To identify (or create) this pattern for an entity-in-focus possessor (individual), we've to find (or
create) another individual (coating) classified by EXTERNAL COATING class and connected to

our entity-in-focus by an instance of AssemblyOfIndividual template, and then look for (or create)
classification of coating individual by a class which is a member of COLOUR CLASS.

Selection of templates for classification has to be agreed for pattern modeling, in this example
we'll use base templates only, specialized to the most specific entity types available (thus

ClassificationOfClass and ClassificationOfIndividual, not Classification).

http://iringug.org/wiki/index.php?title=ISO_15926_Information_Patterns_%28IIP%29

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 12

We'll have two roles for our pattern: possessor and color. Other parts of a pattern will be
representing two classifier classes and four template instances connecting them in a pattern.

If you look at other parameters of Coating Color pattern you will notice that it is applicable to
restricted list of several commodity types: EQUIPMENT, INSTRUMENT, PIPING NETWORK
SYSTEM, PIPING NETWORK SEGMENT, PIPING SPECIALTY COMPONENT, PIPE SPOOL

and VALVE. These are restrictions on the type of possessor role, and are given as a list of
restricting classes with the 'type' key. Some of the restricting classes exist in the PCA RDL, others
can be found only in the iRING Sandbox, this a mix of URIs in two different namespaces.

The pattern is:
{'name' : 'P0003CoatingColor',
 'signature' : {

 'possessor' : 'is coating color of',
 'color' : 'has coating color',},
 'options' : [

 {'parts' : [
 {'posessor': 'self',
 'type' : ['http://rdl.rdlfacade.org/data#R98505918404',
 'http://posccaesar.org/rdl/RDS292589',

 'http://rdl.rdlfacade.org/data#Rd9c631e5-543f-4b98-8684-901e710f953f',
 'http://posccaesar.org/rdl/RDS270359',
 'http://posccaesar.org/rdl/RDS267704',

 'http://rdl.rdlfacade.org/data#R27982435055',
 'http://rdl.rdlfacade.org/data#R85188970528']},

 {'colorclass': self,
 'uri' : 'http://posccaesar.org/rdl/RDS38249'},

 {'type' : p7tpl.ClassificationOfClass,
 'color' : 'hasClass',
 'colorclass' : 'hasClassClassifier'},

possessor

p7tpl: AssemblyOfIndividual

hasWhole

coating
color

EXTERNAL
COATING

COLOUR
CLASS

p7tpl:ClassificationOfIndividual

p7tpl:ClassificationOfIndividual

p7tpl:ClassificationOfClass

hasPart
hasClass

hasClass

hasIndividual

hasIndividual

hasClass

hasClassClassifier

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 13

 {'extcoatclass': 'self',
 'uri' : 'http://posccaesar.org/rdl/RDS736495131'},

 {'type' : p7tpl.ClassificationOfIndividual,
 'extcoatclass' : 'hasClass',

 'coating' : 'hasIndividual'},

 {'type' : p7tpl.ClassificationOfIndividual,

 'color' : 'hasClass',
 'coating' : 'hasIndividual'},

 {'type' : p7tpl.AssemblyOfIndividual,

 'possessor' : 'hasWhole',
 'coating' : 'hasPart'},
] },

]}

The same pattern can be represented in other form, using IIP templates and using more general

'type' restriction instead of Classification templates. This example uses only RDS/WIP URIs.

{

'name': 'CoatingColor',
'signature': { 'possessor' : 'is coating color of',
 'color' : 'has coating color'},

'options': [{'parts':
 [{'possessor': 'self',
 'type': ['http://rdl.rdlfacade.org/data#R98505918404',

 'http://rdl.rdlfacade.org/data#R97295617945',
 'http://rdl.rdlfacade.org/data#Rd9c631e5-543f-4b98-8684-901e710f953f',
 'http://rdl.rdlfacade.org/data#R19192462550',

 'http://rdl.rdlfacade.org/data#R58701958436',
 'http://rdl.rdlfacade.org/data#R27982435055',
 'http://rdl.rdlfacade.org/data#R85188970528']},

{'coating': 'hasPart',

 'possessor': 'hasWhole',

 'type': iiptpl.AssemblyOfIndividualTemplate},

 {'color': 'self',

 'type': 'http://rdl.rdlfacade.org/data#R28965418667'},

{'coating': 'self',

 'type': 'http://rdl.rdlfacade.org/data#R22385076353'},

 {'color': 'hasClass',
 'coating': 'hasIndividual',
 'type': iiptpl.ClassificationOfIndividual}]

}],
}

Always use new files to record your patterns and rename pattern_defs.py file if you are

changing definitions in it. An installer may overwrite it while upgrading the software!

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 14

13. Spreadsheet mapper

Spreadsheet mapper is a powerful adapter designed for the transformation of Excel spreadsheets

to ISO 15926 compliant RDF.

To get an ISO 15926 representation of a spreadsheet we need a data model of the spreadsheet.
This data model should be is described by the pattern in one of the pattern libraries of the Editor,
using reference data and templates from some RDL(s). The mapping is defined between pattern

roles and spreadsheet columns. Then the adapter imports spreadsheet data into the local data
source in RDF format.

Spreadsheet mapper is included into the .15926 Editor as an open source extension released

under the BSD 2-Clause License. Other parts of the software (released in binary and in text
form) are not covered by this license.

13.1. Mapping basics

The adapter works only with Microsoft Excel installed and running on the computer, using Excel

VBA access. It is tested with Microsoft Excel starting from 2002 version.

The adapter can work with files in.xls and .xlsx formats only. The adapter uses many specific

features of these formats, storing mapping data both in open and hidden data fields and attributes
of the spreadsheet. Saving spreadsheet in other formats will most probable destroy the mapping

data and will require a new mapping process.

Spreadsheet adapter allows mapping of only one pattern for a worksheet at a time! You can
save mappings to files and load them from files to make several imports from one worksheet

sequentially with different patterns, but only the last mapping will be stored in the worksheet itself.

The adapter is called via Import – Build patterns from Excel menu command. Make sure that

spreadsheet for data import is open in Excel before you call the adapter! The spreadsheet should

have all the needed worksheets present and named and all necessary column names should be
already defined in Row 1 of each worksheet. Column names should start from a letter or a
numbers, avoid use of other symbols as mapper will add more columns to your spreadsheet with

names starting with "!" and "$".

If you find out that you need to insert a worksheet, rename it or insert more columns for your data
– you have to close the adapter panel, make necessary changes and call adapter again, in some
cases you'll be obliged to redefine the mapping after that.

You can add or change data in the spreadsheet, change mapping and repeat import, search data
source and browse other data sources in the Editor – all without closing the adapter panel.

Previously imported data may be edited or changed when the import is repeated, but never
removed. Changes to the data source incurred by the spreadsheet import can not be undone via
Editor's Undo.

The mapping and some overhead information (classifiers, generated URIs for pattern Scolem
variables, etc.) are stored in the open and in the hidden data fields and attributes of the

spreadsheet. Do not change any fields except the ones you've designed for information entry, and
the adapter will open your worksheets again preserving all previously defined mappings.

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 15

13.2. Mapping and import

Select the worksheet and the pattern in the mapping panel to start the mapping. You can select
any worksheet of any file open on your computer at the time adapter is called. You can select any

pattern option of any pattern in pattern libraries present in the Editor. Patterns are listed
alphabetically with option names (unnamed options are numbered sequentially). Always name
pattern options designed for mapping!

Once worksheet and pattern are

selected, you will be presented
with a list of pattern roles (left
column) and will be able to

choose corresponding worksheet
column names (right column) to
map them.

Data transformation during the
import depends in the mapping,
on the content of the imported

spreadsheet and on the data
contained in the project data
sources. Please pay attention to

the rules describing data changes
for incremental entry of data and
sequential imports of the same

spreadsheet!

Mapping and import rules:

1. You can leave a pattern role unmapped by leaving column selection field empty. Unmapped
roles will be ignored. If unmapped role corresponds to some pattern part or to the role of some

pattern part – corresponding entity will be omitted, and entities linked to it may be omitted also.

2. Sequential imports can not delete any previously imported entity, property or relationship in
your data source, whatever changes are made to the spreadsheet. You can edit any imported

property or relationship; edited information will replace the old one.

3. All pattern roles defined with 'self' value in corresponding pattern parts represent entities which
potentially may be created by the adapter. Such roles have a checkbox before their names.

3.1. Mark this checkbox if you want to create new data entities for this part of a pattern. The cells

in the column mapped to the marked pattern role may be left empty, may contain special value
new or contain text which will be treated as an URI.

- If the cell is empty – corresponding entity will be not be created for this row. If according to

the pattern structure it should occupy a mandatory role in some relational entity of a known
type (Part 2 type instance or a template instance) – this one will be skipped in turn, and
entities linked to it may be skipped also.

- If the cell contains special value new – new entity will be created in the data source. Its
URI will generated in the Namespace for new entities of the data source according to the

rules described in Volume 1. Getting started.

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 16

- If the cell contains any other text – it will be interpreted as an URI.

If an entity with this URI already exists in the data source – data for it will be added.
All changed properties and relationships will replace the old ones, but there is no

way to delete properties or relationships by changing the spreadsheet.

If there is no entity with this URI in the data source – it will be created with this URI.
The adapter will not check whether URI is well-formed or not!

3.2. If checkbox at the role name is not marked, the adapter will not create new entity for the
corresponding part of the pattern. If this part of the pattern is restricted by a 'type' key – the
adapter will attempt to build a full classifier for this restriction by searching for all occurrences of
Classification pattern in all project data sources. The set of classes identified in this process will

be exported to the spreadsheet and built into the drop-down list for all cells in the column.

If such classifier is present as a part in the pattern, try to import an empty worksheet immediately
after you've defined the mapping. It will create drop-down menus for all cells of the corresponding

columns which will simplify further manual data entry.

4. The cells in all other mapped spreadsheet columns may be left empty, or may contain strings,
including labels of some reference data entity or URIs.

4.1. If the column is mapped to the pattern role which represents annotation property:

- If the cell is empty – the property will be omitted. If such property for the entity already
exists – it will be left intact.

- If the cell contains any string – the property will be created with the specified value.

4.2. If the column is mapped to the pattern role which represents relational entity role or other

object property, values of its cells will be interpreted as references to entities in the project. The
adapter will create relational entity of a known type (Part 2 type instance or a template instance)
only if all its mandatory roles are successfully filled by the entities imported from spreadsheet

according to the mapping. The adapter will always create any other object property with specified
value.

To find a referenced entity for the role (property) the adapter will:

- Attempt to search for an entity with exactly the same rdfs:label property. If search brings
such an entity – it will be placed in the referred role.

- If search brings nothing – adapter will use a value in the cell as an URI of an entity without
checking whether it is well-formed or not.

5. Entities corresponding to the parts of the pattern which represent Scolem variables (parts which
are not present in the signature) will be always created at import, except for the following cases:

- When they are unambiguously identified by 'uri' key with a single value. Such entities will

be used to populate relations to which they are assigned, but entities themselves will not be
created in the data source.

- When one or more of mandatory roles of a relational entity (Part 2 type instance or a
template instance) can not be filled after iterative attempts to do data transformation for the

worksheet.

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 17

6. For partially filled worksheet the adapter will iterate data transformation process attempting to
create as many entities as possible.

7. The adapter is creating parts of the pattern in the order they are listed in the pattern definition

dictionary. It is advisable to arrange pattern parts in the definition dictionary in such a way that an
entity definition part (the part with 'self' value for pattern role or Scolem variable key) appears
before this particular pattern role or Scolem variable is used to reference a property key in another

part representing relational entity.

8. The adapter is writing generated URI to the worksheet (overwriting new strings) at the moment
this URI is generated. It is possible to reference newly generated URI in some other cell and use it

in the same import (see an example below).

13.3. Saving and restoring the mapping

Although the adapter will store your mapping in the spreadsheet itself, the way is provided to save
the mapping to a file and restore it from a file. It allows to do several imports with different patterns
from the same worksheet as described above. This feature is also useful if you are designing

spreadsheet form to be filled by other parties and returned to you for processing, and you can not
be sure it will not be reformatted or otherwise corrupted in the process.

To save the mapping to a file press Save to file button on the adapter panel. The mapping is

saved to a JSON file. The mapper will ask you for the file name and location.

To restore the mapping from a file select the worksheet for which the mapping was saved and
press Load from file button on the adapter panel. The mapper will ask you to locate the JSON file

and will restore the mapping.

Remember that you have to save a separate mapping for each worksheet kind!

13.4. Mapping example

Files for mapping demo can be found in the <samples>\mapping folder. Take the file

demo_mapping_ptrns.py with the pattern library required for demonstration from this folder and
copy it to the <installation_folder>\patterns folder. Reload patterns by pressing Ctrl+Shift+W.

Open project file demomapping.15926 from the same folder.

Two files should appear in the project: PCA RDL from local file (the Editor may ask you to locate
it) and Demo Local RDL data source (DemoLocalRDL.rdf file).

New entities can will be imported to Demo Local RDL. It also contains data for the pattern which
describes data structures of the sample spreadsheet. You can see there some additional
information recorded for 201 entity types of ISO 15926-2. There are labels defined for all entity

types (absent in Part 2 built-in data model) and all entity types are declared to be members of a
special ClassOfClass entity ISO 15926-2 TYPE CLASS. These data are necessary to form

convenient drop-down lists for the spreadsheet form.

Another ClassOfClass entity Demo Local RDL Class is also predefined in the local RDL to collect

all reference data entities created in the local RDL during imports from the spreadsheet.

Now open the SampleData.xls entity registration form in Excel (worksheet RDL). We will use this
form to define some classes for local reference data library and import them into the Demo Local

RDL.

.15926 Editor v1.4 Volume 4. Patterns and Mapping TechInvestLab.ru

 18

Refer to the pattern ReferenceDataRegistration with a single option PCAMode in the file
demo_mapping_ptrns.py. It describes the data model of this worksheet. It is really a simplified

realization of the current rules of PCA RDL, or part of the planned JORD Registration TSP.

An entity (named Object in the pattern) is described with all required annotations and link to its
Part 2 type. Annotation properties are referenced using the short names defined for the data
source Demo Local RDL.

In addition part2:Specialization instance is created linking the new entity to its Subclass entity,
and part2:Classification instance is created to classify the new entity with a special classifier
Demo Local RDL Class used to collect all reference data entities created in the local RDL.

Look at sample classes already described in the spreadsheet.

There are four classes in total.

A PCA RDL superclass is defined for two of them - once with the name and once with the URI.

There is a drop-down list of Part 2 types and each cell in the P2 Type column can be filled using it.

There are three columns for annotations used in PCA RDL and a column for a special unique ID

property.

Look at the row defining VERTICAL SALT WATER PUMP and see that its Superclass is defined
as a link to the cell which will contain an URI for the class SALT WATER PUMP. In this manner an

import of the class hierarchy can be structured and executed at once.

In the cells of Default ID column you can see an Excel function which puts there substrings of the
cells from URI column in the same row. The moment the adapter generates and writes an URI for
a newly created entity to the URI column – this function will cut off the namespace (as it has a

known length) and the adapter will use UUID fragment identifier to populate unique ID property.

Make sure that Demo Local RDL data source is open in the active panel and call mapping
adapter (Import – Build patterns from Excel). Choose SampleData.xls-RDL in the Select sheet

menu. The adapter will load the mapping stored in the worksheet, if it fails to do so - Press Load
from files button and select rdl_mapping_simple.json file. Look for the message Ready for
import under the mapping fields.

Press Import button.

You can see URIs and unique IDs being written in the spreadsheet. Some additional information
will appear to the right of the main work area of the sheet.

The message Ready for import under the mapping fields appears again when the import is

completed.

Don't close the adapter panel; you can move it on your screen freely. Look for new entities in the
Demo Local RDL (you can use console query show(hasCreator='vvagr') to see all entities

created as a result of the first import. Check that their properties and relations were created as
described in the pattern.

Now you can change or add data to the worksheet and repeat the import. Please contact
TechInvestLab.ru for more pattern mapping examples and consultations on spreadsheet mapping.

	License
	12. Patterns
	12.1. Approach to patterns
	12.2. Patterns in the Editor
	12.3. Patterns definition
	12.3.1. Overall pattern structure
	12.3.2. Pattern roles
	12.3.3. Pattern options

	12.4. Examples
	12.4.1. Simple pattern example
	12.4.2. Scolem variable example
	12.4.3. URI usage example
	12.4.4. Class restriction example
	12.4.4. IIP pattern modelling

	13. Spreadsheet mapper
	13.1. Mapping basics
	13.2. Mapping and import
	13.3. Saving and restoring the mapping
	13.4. Mapping example

